At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Answer:
The orthocentre of the given vertices ( 2 , -3.5)
Step-by-step explanation:
Step(i):-
The orthocentre is the intersecting point for all the altitudes of the triangle.
The point where the altitudes of a triangle meet is known as the orthocentre.
Given Points are K (3.-3), L (2,1), M (4,-3)
The Altitudes are perpendicular line from one side of the triangle to the opposite vertex
The altitudes are MN , KO , LP
step(ii):-
Slope of the line
[tex]KL = \frac{y_{2}-y_{1} }{x_{2}-x_{1} } = \frac{1-(-3)}{2-3} = -4[/tex]
The slope of MN =
The perpendicular slope of KL
= [tex]\frac{-1}{m} = \frac{-1}{-4} = \frac{1}{4}[/tex]
The equation of the altitude
[tex]y - y_{1} = m( x-x_{1} )[/tex]
[tex]y - (-3) = \frac{1}{4} ( x-4 )[/tex]
4y +12 = x -4
x - 4 y -16 = 0 ...(i)
Step(iii):-
Slope of the line
[tex]LM = \frac{y_{2}-y_{1} }{x_{2}-x_{1} } = \frac{-3-1}{4-2} = -2[/tex]
The slope of KO =
The perpendicular slope of LM
= [tex]\frac{-1}{m} = \frac{-1}{-2} = \frac{1}{2}[/tex]
The equation of the altitude
[tex]y - y_{1} = m( x-x_{1} )[/tex]
The equation of the line passing through the point K ( 3,-3) and slope
m = 1/2
[tex]y - (-3) = \frac{1}{2} ( x-3 )[/tex]
2y +6 = x -3
x - 2y -9 =0 ....(ii)
Solving equation (i) and (ii) , we get
subtracting equation (i) and (ii) , we get
x - 4y -16 -( x-2y-9) =0
- 2y -7 =0
-2y = 7
y = - 3.5
Substitute y = -3.5 in equation x -4y-16=0
x - 4( -3.5) - 16 =0
x +14-16 =0
x -2 =0
x = 2
The orthocentre of the given vertices ( 2 , -3.5)
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.