Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Answer:
we conclude that the rule will be:
[tex]a_n=\frac{31}{12}+\frac{1}{6}n[/tex]
Step-by-step explanation:
Given
[tex]a_6=3\frac{7}{12}=\frac{43}{12}[/tex]
[tex]a_1=2\frac{3}{4}=\frac{11}{4}[/tex]
We know the arithmetic sequence with the common difference is defined as
[tex]a_n=a_1+\left(n-1\right)d[/tex]
where a₁ is the first term and d is a common difference.
so
a₆ = a₁ + (6-1) d
substituting a₆ = 43/12 and a₁ = 11/4 to determine d
[tex]\frac{43}{12}=\:\frac{11}{4}\:+\:5d[/tex]
switch sides
[tex]\frac{11}{4}+5d=\frac{43}{12}[/tex]
subtract 11/4 from both sides
[tex]\frac{11}{4}+5d-\frac{11}{4}=\frac{43}{12}-\frac{11}{4}[/tex]
[tex]5d=\frac{5}{6}[/tex]
Divide both sides by 5
[tex]\frac{5d}{5}=\frac{\frac{5}{6}}{5}[/tex]
[tex]d=\frac{1}{6}[/tex]
as
a₁ = 11/4
[tex]d=\frac{1}{6}[/tex]
Therefore, the nth term of the Arithmetic sequence will be:
[tex]a_n=a_1+\left(n-1\right)d[/tex]
substituting d = 1/6 and a₁ = 11/4
[tex]a_n=\frac{11}{4}+\left(n-1\right)\frac{1}{6}[/tex]
[tex]=\frac{11}{4}+\frac{1}{6}n-\frac{1}{6}[/tex]
[tex]=\frac{31}{12}+\frac{1}{6}n[/tex]
Therefore, we conclude that the rule will be:
[tex]a_n=\frac{31}{12}+\frac{1}{6}n[/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.