Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

The time period, T, of a simple pendulum is directly proportional to the square root of the length, d, of the pendulum.

When d=6, T=5

Find the value of T when d=3

Input note: give your answer correct to 2 decimal place.


Sagot :

Answer:

[tex]T = 3.54[/tex]

Step-by-step explanation:

Given

Direct Variation of T to [tex]\sqrt d[/tex]

[tex]d =6;\ when\ T = 5[/tex]

Required

Determine T when d = 3

The variation can be represented as:

[tex]T\ \alpha\ \sqrt d[/tex]

Convert to equation

[tex]T = k\sqrt d[/tex]

[tex]d =6;\ when\ T = 5[/tex]; so we have:

[tex]5 = k * \sqrt 6[/tex]

Make k the subject:

[tex]k = \frac{5}{\sqrt 6}[/tex]

To solve for T when d = 3.

Substitute 3 for d and [tex]k = \frac{5}{\sqrt 6}[/tex] in [tex]T = k\sqrt d[/tex]

[tex]T = \frac{5}{\sqrt 6} * \sqrt{3}[/tex]

[tex]T = \frac{5\sqrt{3}}{\sqrt 6}[/tex]

[tex]T = \frac{5 * 1.7321}{2.4495}[/tex]

[tex]T = \frac{8.6605}{2.4495}[/tex]

[tex]T = 3.5356[/tex]

[tex]T = 3.54[/tex] -- approximated

Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.