At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Answer:
Option B is correct .
Step-by-step explanation:
According to Question , both the graph have same shape . If we look at the the first graph it cuts x - axis at (0 , 2) and ( 0 , -2) . Hence x = 2 and -2 are the zeroes of the equation .
And ,the given function is ,
[tex]\implies f(x) = 4 - x^2 \\\\\implies f(x) = 4-x^2=0 \\\\\implies 2^2-x^2=0\\\\\implies (2-x)(2+x) = 0 \\\\\boxed{\red{\bf \implies x = 2 , (-2) }}[/tex]
• Hence ,we can can see that x = 2 and (-2) are the zeroes of graph.
This implies that if we know the zeroes , we can frame the Equation.
On looking at second parabola , it's clear that cuts x - axis at ( 1, 0 ) and (-1,0). So , 1 and -1 are the zeroes of the quadratic equation . Let the function be g(x) . Here , a and ß are the zeroes.
[tex] \begin{lgathered}\implies g(x) = (x-\alpha)(x-\beta) \\\\\implies g(x) = (1+x)(1-x) \\\\\boxed{\pink{\bf \implies g(x) = 1 - x^2}}\end{lgathered} [/tex]
Hence option B is correct .
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.