Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Answer:
Answer image is attached.
Step-by-step explanation:
Given rational expressions:
[tex]1.\ \dfrac{x^2+x+4}{x-2}\\2.\ \dfrac{x^2-x+4}{x-2}\\3.\ \dfrac{x^2-4x+10}{x-2}\\4.\ \dfrac{x^2-5x+16}{x-2}[/tex]
And the rewritten forms:
[tex](x-2)+\dfrac{6}{x-2}\\(x+3)+\dfrac{10}{x-2}\\(x+1)+\dfrac{6}{x-2}\\(x-3)+\dfrac{10}{x-2}[/tex]
We have to match the rewritten terms with the given expressions.
Let us consider the rewritten terms and let us solve them one by one by taking LCM.
[tex](x-2)+\dfrac{6}{x-2}\\\Rightarrow \dfrac{(x-2)^{2}+6 }{x-2}\\\Rightarrow \dfrac{x^2-4x+4+6 }{x-2}\\\Rightarrow \dfrac{x^2-4x+10}{x-2}[/tex]
So, correct option is 3.
[tex](x+3)+\dfrac{10}{x-2}\\\Rightarrow \dfrac{(x+3)(x-2)+10}{x-2}\\\Rightarrow \dfrac{(x^2+3x-2x-6)+10}{x-2}\\\Rightarrow \dfrac{x^2+x+4}{x-2}[/tex]
So, correct option is 1.
[tex](x+1)+\dfrac{6}{x-2}\\\Rightarrow \dfrac{(x+1)(x-2)+6}{x-2}\\\Rightarrow \dfrac{x^{2} +x-2x-2+6}{x-2}\\\Rightarrow \dfrac{x^{2} -x+4}{x-2}[/tex]
So, correct option is 2.
[tex](x-3)+\dfrac{10}{x-2}\\\Rightarrow \dfrac{(x-3)(x-2)+10}{x-2}\\\Rightarrow \dfrac{x^2-3x-2x+6+10}{x-2}\\\Rightarrow \dfrac{x^2-5x+16}{x-2}[/tex]
So, correct option is 4.
The answer is also attached in the answer area.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.