Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

20 points for anyone that can solve the question ​

20 Points For Anyone That Can Solve The Question class=

Sagot :

Answer:

[tex] {3}^{x} = {9}^{y} - - - eqn(i) \\ 4 ^{xy} = {2}^{x - 2} - - - eqn(ii) \\ from \: (i) \: introduce \: log_{10}\: \: \\ log( {3}^{x} ) = log( {9}^{y} ) \\ x log(3) = y log(9) \\ x log(3) = 2y log(3) \\ x = 2y - - - eqn(iii) \\ substitute \: for \: x \: in \: eqn(ii) \\ {4}^{ {2y}^{2} } = {2}^{2(y - 1)} \\ {4}^{ {2y}^{2} } = {4}^{(y - 1)} \\ from \: indice \: laws \\ {2}^{ {y}^{2} } = y - 1 \\ introduce \: log_{10} \\ {y}^{2} log(2) = log(y) - log(1) \\ log(2) = {y}^{ - 2} log (y \: - \: 1) \\ {y}^{ - 2} (2 - y - 1) = 10 \\ \frac{2}{ {y}^{2} } - \frac{1}{y} - \frac{1}{ {y}^{2} } = 10 \\ 1 - y = 10 {y}^{2} \\ 10 {y}^{2} + y - 1 = 0 \\ [/tex]

hope that step is enough to give you the two values of y, coz I gat no calc here with me.

hint: use the quadratic equation