At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Answer:
The three points that lie on a line y = -2/5x with a slope -2/5 will be:
- (0, 0)
- (5, -2)
- (10, -4)
Please check the attached graph also.
Step-by-step explanation:
We know that the slope-intercept form of the line equation is
[tex]y = mx+b[/tex]
where m is the slope and b is the y-intercept
Given
slope = m = -2/5
We suppose the line passes through the origin.
so b = 0
substituting m = -2/5 and b = 0 in the slope-intercept form
[tex]y = mx+b[/tex]
y = -2/5x + 0
y = -2/5x
Thus, the equation of line with the slope m = -2/5 and passes through the origin (0, 0) will be:
y = -2/5x
As the equation of line passes through (0, 0), thus the point (0, 0) lies on the line.
Putting x = 0 in the equation y = -2/5x
y = -2/5 × (0)
y = 0
Thus, (0, 0) is the point which also passes through the line
Putting x = 5 in the equation y = -2/5x
y = -2/5 × 5
y = -2
Thus, (5, -2) is the point which also passes through the line
Now, putting x = 10 in the equation y = -2/5x
y = -2/5 × 10
y = -4
Thus, (10, -4) is the point which also passes through the line.
Thus, the three points that lie on a line y = -2/5x with a slope -2/5 will be:
- (0, 0)
- (5, -2)
- (10, -4)
Please check the attached graph also.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.