Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Answer:
Efriction = 768.23 [kJ]
Explanation:
In order to solve this problem we must use the principle of energy conservation. Where it tells us that the energy of a system plus the work applied or performed by that system, will be equal to the energy in the final state. We have two states the initial at the time of the balloon jump and the final state when the parachutist lands.
We must identify the types of energy in each state, in the initial state there is only potential energy, since the reference level is in the ground, at the reference point the potential energy is zero. At the time of landing the parachutist will only have potential energy, since it reaches the reference level.
The friction force acts in the opposite direction to the movement, therefore it will have a negative sign.
[tex]E_{pot}-E_{friction}=E_{kin}[/tex]
where:
[tex]E_{pot}=m*g*h\\E_{kin}=\frac{1}{2}*m*v^{2}[/tex]
m = mass = 56 [kg]
h = elevation = 1400 [m]
v = velocity = 5.6 [m/s]
[tex](56*9.81*1400)-E_{friction}=\frac{1}{2}*56*(5.6)^{2}\\769104 -E_{friction}= 878.08 \\E_{friction}=769104-878.08\\E_{friction}=768226[J] = 768.23 [kJ][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.