Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
The magnitude of k at 65.0∘C : 1912.7 /s
Further explanation
Given
k at 25 °C = 1.35 x 10² /s k1
T₁=25 + 273 = 298 K
T₂=65 + 273 = 338 K
Required
the magnitude of k at 65.0∘C
Solution
Arrhenius Equation :
[tex]\tt ln(\dfrac{k_1}{k_2})=(\dfrac{1}{T_2}-\dfrac{1}{T_1})\dfrac{Ea}{R}[/tex]
R : gas constant= 8.314 J/molK
Input the value :
[tex]\tt ln(\dfrac{1.35\times 10^2}{k_2})=(\dfrac{1}{338}-\dfrac{1}{298})\dfrac{55.5.10^3}{8.314}\\\\ln(\dfrac{135}{k_2})=-2.651\rightarrow \dfrac{135}{k_2}=e^{-2.651}\rightarrow k_2=1912.7[/tex]
The magnitude of k will be "1912.7".
Temperature,
- [tex]T_1 = 25^{\circ} C[/tex] or, [tex]298 \ K[/tex]
- [tex]T_2 = 65^{\circ} C[/tex] or, [tex]338 \ K[/tex]
Rate constant,
- [tex]1.35\times 10^2 \ s^{-1}[/tex]
Gas constant,
- [tex]R = 8.314 \ J/mol[/tex]
By using the Arrhenius equation, we get
→ [tex]ln (\frac{k_1}{k_2} ) = (\frac{1}{T_2} - \frac{1}{T_1} )\frac{Ea}{R}[/tex]
By substituting the values, we get
→ [tex]ln (\frac{1.35\times 10^2}{k_2} ) = (\frac{1}{338} - \frac{1}{298} )\frac{55.5\times 10^3}{8.314}[/tex]
→ [tex]ln (\frac{135}{k_2} ) = -2.651[/tex]
[tex]\frac{135}{k_2} = e^{-2.651}[/tex]
[tex]k_2 = 1912.7[/tex]
Thus the response above is right.
Learn more about magnitude here:
https://brainly.com/question/8964080
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.