Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Answer:
The work done by picking up 100 20-L bottles and raising it vertically 1 meter is 19614 joules.
Explanation:
By the Work-Energy Theorem, the work needed to raise vertically 100 bottles of water is equal to the gravitational potential energy, units for work and energy are in joules:
[tex]\Delta W = \Delta U_{g}[/tex] (1)
Where:
[tex]\Delta W[/tex] - Work.
[tex]\Delta U_{g}[/tex] - Gravitational potential energy.
The work is equal to the following formula:
[tex]\Delta W = n\cdot \rho \cdot V \cdot g \cdot \Delta h[/tex] (2)
Where:
[tex]n[/tex] - Number of bottles, dimensionless.
[tex]\rho[/tex] - Density of water, measured in kilograms per cubic meter.
[tex]V[/tex] - Volume, measured in cubic meters.
[tex]g[/tex] - Gravitational acceleration, measured in meters per square second.
[tex]\Delta h[/tex] - Vertical displacement, measured in meters.
If we know that [tex]n = 100[/tex], [tex]\rho = 1000\,\frac{kg}{m^{3}}[/tex], [tex]V = 0.02\,m^{3}[/tex], [tex]g = 9.807\,\frac{m}{s^{2}}[/tex] and [tex]\Delta h = 1\,m[/tex], then the work done is:
[tex]\Delta W = (100)\cdot \left(1000\,\frac{kg}{m^{3}} \right)\cdot (0.02\,m^{3})\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (1\,m)[/tex]
[tex]\Delta W = 19614\,J[/tex]
The work done by picking up 100 20-L bottles and raising it vertically 1 meter is 19614 joules.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.