Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Answer:
[tex]\mathrm{Domain\:of\:}\:4\sqrt{t}\::\quad \begin{bmatrix}\mathrm{Solution:}\:&\:t\ge \:0\:\\ \:\mathrm{Interval\:Notation:}&\:[0,\:\infty \:)\end{bmatrix}[/tex]
The graph is also attached below.
Step-by-step explanation:
Given the expression
[tex]f\left(t\right)=\sqrt{t}\:+3\sqrt{t}[/tex]
We know that the domain of a function is the set of inputs or argument values for which the function is real and defined.
We know that we can not have a negative value of 't' inside the radicals because if we put any negative number inside the radical expression, it would make the function undefined.
In other words, the value of t ≥ 0.
Therefore, the function domain is:
[tex]\mathrm{Domain\:of\:}\:4\sqrt{t}\::\quad \begin{bmatrix}\mathrm{Solution:}\:&\:t\ge \:0\:\\ \:\mathrm{Interval\:Notation:}&\:[0,\:\infty \:)\end{bmatrix}[/tex]
The graph is also attached below.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.