Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Ask your questions and receive precise answers from experienced professionals across different disciplines. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Answer:
[tex]\mathrm{Domain\:of\:}\:4\sqrt{t}\::\quad \begin{bmatrix}\mathrm{Solution:}\:&\:t\ge \:0\:\\ \:\mathrm{Interval\:Notation:}&\:[0,\:\infty \:)\end{bmatrix}[/tex]
The graph is also attached below.
Step-by-step explanation:
Given the expression
[tex]f\left(t\right)=\sqrt{t}\:+3\sqrt{t}[/tex]
We know that the domain of a function is the set of inputs or argument values for which the function is real and defined.
We know that we can not have a negative value of 't' inside the radicals because if we put any negative number inside the radical expression, it would make the function undefined.
In other words, the value of t ≥ 0.
Therefore, the function domain is:
[tex]\mathrm{Domain\:of\:}\:4\sqrt{t}\::\quad \begin{bmatrix}\mathrm{Solution:}\:&\:t\ge \:0\:\\ \:\mathrm{Interval\:Notation:}&\:[0,\:\infty \:)\end{bmatrix}[/tex]
The graph is also attached below.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.