Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

If the mode of the data is 34.5, find the missing frequency 'f':
Class
0-15
15 - 30
30 – 45
45 - 60
60 – 75
Frequency
2
7
f
3
7​
please answer!

Sagot :

Given:

Frequency distribution table.

Mode = 34.5

To find:

The value of missing frequency 'f'.

Solution:

Formula for mode is

[tex]Mode=l+\dfrac{f_1-f_0}{2f_1-f_0-f_2}\times h[/tex]

where, l is lower limit of modal class, [tex]f_1[/tex] is frequency of modal class, [tex]f_0[/tex] is frequency of preceding class, [tex]f_2[/tex] is frequency of succeeding class, h is class size.

Mode is 34.5, so the modal class is 30-45. So,

[tex]l=30,f_1=f,f_0=7, f_2=3,h=45-30=15[/tex]

Putting these values in the above formula, we get

[tex]34.5=30+\dfrac{f-7}{2f-7-3}\times 15[/tex]

[tex]34.5-30=\dfrac{f-7}{2f-10}\times 15[/tex]

[tex]4.5=\dfrac{f-7}{2f-10}\times 15[/tex]

Divide both sides by 15.

[tex]\dfrac{4.5}{15}=\dfrac{f-7}{2f-10}[/tex]

[tex]0.3=\dfrac{f-7}{2f-10}[/tex]

[tex]0.3(2f-10)=f-7[/tex]

[tex]0.6f-3=f-7[/tex]

Separating variable terms, we get

[tex]0.6f-f=3-7[/tex]

[tex]-0.4f=-4[/tex]

Divide both sides by -0.4.

[tex]f=\dfrac{-4}{-0.4}[/tex]

[tex]f=10[/tex]

Therefore, the value of f is 10.