Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Answer:
18 m
Explanation:
G = Gravitational constant
m = Mass of planet = [tex]\rho V[/tex]
[tex]\rho[/tex] = Density of planet
V = Volume of planet assuming it is a sphere = [tex]\dfrac{4}{3}\pi r^3[/tex]
r = Radius of planet
Acceleration due to gravity on a planet is given by
[tex]g=\dfrac{Gm}{r^2}\\\Rightarrow g=\dfrac{G\rho V}{r^2}\\\Rightarrow g=\dfrac{G\rho \dfrac{4}{3}\pi r^3}{r^2}\\\Rightarrow g=\dfrac{4G\rho\pi r}{3}[/tex]
So,
[tex]g\propto \rho r[/tex]
Density of other planet = [tex]\rho_p=\dfrac{1}{4}\rho_e[/tex]
Radius of other planet = [tex]r_p=\dfrac{1}{3}r_e[/tex]
[tex]\dfrac{g_e}{g_p}=\dfrac{\rho_e r_e}{\rho_p r_p}\\\Rightarrow \dfrac{g_e}{g_p}=\dfrac{\rho_e r_e}{\dfrac{1}{4}\rho_e\times \dfrac{1}{3}r_e}\\\Rightarrow \dfrac{g_e}{g_p}=12\\\Rightarrow g_p=\dfrac{g_e}{12}\\\Rightarrow g_p=\dfrac{9.8}{12}[/tex]
Since the person is jumping up the acceleration due to gravity will be negative.
From kinematic equations we have
[tex]v^2-u^2=2g_es\\\Rightarrow u^2=v^2-2g_es\\\Rightarrow u^2=0-2\times -9.8\times 1.5\\\Rightarrow u^2=2\times 9.8\times 1.5[/tex]
On the other planet
[tex]v^2-u^2=2g_ps\\\Rightarrow s=\dfrac{v^2-u^2}{2g_p}\\\Rightarrow s=\dfrac{0-(2\times 9.8\times 1.5)}{2\times -\dfrac{9.8}{12}}\\\Rightarrow s=18\ \text{m}[/tex]
The man can jump a height of 18 m on the other planet.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.