maybee20
Answered

Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

A man can jump 1.5 m on earth. calculate the approximate
height he might be
able to jump on
a planet whose
density is one quarter of the earth and where radius
is one third that of earth.

Radius of earth = 6400km
Acc. due to gravity=9.8 m/s²
Mass of earth = 6X10^24 kg

Sagot :

Answer:

18 m

Explanation:

G = Gravitational constant

m = Mass of planet = [tex]\rho V[/tex]

[tex]\rho[/tex] = Density of planet

V = Volume of planet assuming it is a sphere = [tex]\dfrac{4}{3}\pi r^3[/tex]

r = Radius of planet

Acceleration due to gravity on a planet is given by

[tex]g=\dfrac{Gm}{r^2}\\\Rightarrow g=\dfrac{G\rho V}{r^2}\\\Rightarrow g=\dfrac{G\rho \dfrac{4}{3}\pi r^3}{r^2}\\\Rightarrow g=\dfrac{4G\rho\pi r}{3}[/tex]

So,

[tex]g\propto \rho r[/tex]

Density of other planet = [tex]\rho_p=\dfrac{1}{4}\rho_e[/tex]

Radius of other planet = [tex]r_p=\dfrac{1}{3}r_e[/tex]

[tex]\dfrac{g_e}{g_p}=\dfrac{\rho_e r_e}{\rho_p r_p}\\\Rightarrow \dfrac{g_e}{g_p}=\dfrac{\rho_e r_e}{\dfrac{1}{4}\rho_e\times \dfrac{1}{3}r_e}\\\Rightarrow \dfrac{g_e}{g_p}=12\\\Rightarrow g_p=\dfrac{g_e}{12}\\\Rightarrow g_p=\dfrac{9.8}{12}[/tex]

Since the person is jumping up the acceleration due to gravity will be negative.

From kinematic equations we have

[tex]v^2-u^2=2g_es\\\Rightarrow u^2=v^2-2g_es\\\Rightarrow u^2=0-2\times -9.8\times 1.5\\\Rightarrow u^2=2\times 9.8\times 1.5[/tex]

On the other planet

[tex]v^2-u^2=2g_ps\\\Rightarrow s=\dfrac{v^2-u^2}{2g_p}\\\Rightarrow s=\dfrac{0-(2\times 9.8\times 1.5)}{2\times -\dfrac{9.8}{12}}\\\Rightarrow s=18\ \text{m}[/tex]

The man can jump a height of 18 m on the other planet.