Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

Given: tangent A = negative StartRoot 15 EndRoot What is the value of Tangent (A minus StartFraction pi over 4 EndFraction)?

Sagot :

Answer:

( √15 + 8)/7

Step-by-step explanation:

TanA = -√15

.we are to find tan(A-π/4).

In trigonometry

Tan(A-B) = TanA - TanB/1+ tanAtanB

Hence:

tan(A-π/4) = TanA - Tanπ/4/1+ tanAtanπ/4

Substitute tan A value into the formula

tan(A-π/4) = -√15-tanπ/4 / 1+(-√15)(tanπ/4

tan(A-π/4) = -√15-1/1-√15

Rationalize

-√15-1/1-√15 × 1+√15/1+√15

= -√15-√225-1-√15/(1-√225)

= -2√15-15-1/1-15

= -2√15 -16/(-14)

= -2(√15+8)/-14

= √15 + 8/7

Hence the required value is ( √15 + 8)/7

Answer:

Probably D ( -√15-1/1-√15)

Step-by-step explanation:

it was in adidemiokin's answer before they rationalized it. Couldn't find the darn answer anywhere else.  I'm on my 3rd attempt on the EDGE precalc Unit test hopefully D is right.

Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.