Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Answer:
a) 113N
b) 0.37
Explanation:
a) Using the Newton's second law:
\sum Fx =ma
Since the crate is not moving then its acceleration will be zero. The equation will become:
\sum Fx = 0
\sumFx = 0
Fm - Ff = 0.
Fm is the moving force
Ff is the frictional force
Fm = Ff
This means that the moving force is equal to the force of friction if the crate is static.
Since applied force is 113N, hence the magnitude of the static friction force will also be 113N
b) Using the formula
Ff = nR
n is the coefficient of friction
R is the reaction = mg
m is the mass of the crate = 31.2kg
g is the acceleration due to gravity = 9.8m/s²
R = 31.2 × 9.8
R = 305.76N
Recall that;
n = Ff/R
n = 113/305.76
n = 0.37
Hence the minimum possible value of the coefficient of static friction between the crate and the floor is 0.37
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.