Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Answer:
Following are the solution to the given points:
Explanation:
Oxalic acid volume [tex]= 25.00 \ mL = 0.0250 \ litres[/tex]
KMnO4 volume [tex]= 12.70 \ ml = 0.0127 \ litres[/tex]
KMnO4 molarity [tex]= 0.0206\ M = 0.0206 \ \frac{mol}{l}[/tex]
In point a:
Its pink presence after full intake of oxalic acid with attachment to KMnO4 is suggested by the end-point of the process due to the small abundance of KMnO4, As just a self predictor, KMnO4 is used.
In point b:
[tex]H_2C_2O_4[/tex] molecules mole ratio to [tex]MnO_4^-[/tex] ions:
The equilibrium for both the oxalic acid and KMnO4 reaction is suggested:
[tex]6H+ (aq) + 2MnO_4- (aq) + 5H_2C_2O_4 (aq) \rightarrow 10CO_2 (g) + 8H_2O (l) + 2Mn_2+ (aq)[/tex]
The reaction of 5 mol of oxalic acid is 2 mol [tex]MnO_4^-[/tex] ions
[tex]H_2C_2O_4[/tex]: molecules mole proportion to [tex]MnO_4^-[/tex] ions:
[tex]5 H_2C_2O_4[/tex]: : [tex]2MnO_4^-[/tex]
In point c:
The Moles of [tex]MnO_4^-[/tex] ions reacted with the [tex]H_2C_2O_4[/tex]:
The molar mass of the solution is the number of solute moles in each volume of water
[tex]Molarity =\frac{moles}{Volume}\\\\Moles \ of\ KMnO_4 = Molarity \times volume[/tex]
Moles with ions reacted to mol with both the amount of : supplied.
In point d:
[tex]H_2C_2O_4[/tex] moles in the sample present:
[tex]H_2C_2O_4[/tex] moles = moles [tex]MnO_4^-[/tex] ions [tex]\times[/tex] mole ratio
[tex]H_2C_2O_4[/tex] moles in the sample = [tex]2.6162 \times 10^{-4}\ mol \times (\frac{5}{2})[/tex]
[tex]H_2C_2O_4[/tex] molecules = [tex]6,5405\times 10^{-4}[/tex] mol are present in the sample
In point e:
Oxalic acid molarity = [tex]\frac{mole}{volume}[/tex]
[tex]=\frac{ 6.54 \times 10^{-4} mol}{0.025\ L} \\\\ = 0.0260 \ M[/tex]
In point f:
Oxalic acid level by mass in the solution:
Oxalic acid mass calculation:
Oxalic acid molar weight = 90.0349 [tex]\frac{g}{mol}[/tex].
Oxalic acid mass per liter = oxalic acid moles per liter [tex]\times[/tex] molar mass
[tex]= 0.0260 \frac{mol}{L} \times 90.0349 \frac{g}{mol}\\\\= 2.3409 \frac{g}{L}\\\\ = 2.3409 \frac{g}{1000 \ mL}\\\\= 0.2409 \frac{g}{100 \ mL}[/tex]
When Oxalic acid solution density[tex]= 1.00 \ \frac{g}{mL}[/tex]
Mass oxalic acid percentage = [tex]0.2409 \%[/tex]
Oxalic acid mass proportion [tex]= 0.24\% \ \frac{W}{v} \ \ Mass[/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.