Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

A potter's wheel moves uniformly from rest to an angular speed of 0.17 rev/s in 32.0 s.

a. Find its angular acceleration in radians per second per second.
b. Would doubling the angular acceleration during the given period have doubled final angular speed?


Sagot :

Answer:

a)   α = 0.0334 rad / s² ,  b) w = 2.14  rad/s see that the angular velocity doubles.

Explanation:

This is a magular kinematics exercise

Let's reduce the magnitudes to the SI system

   w = 0.17 rev /s (2π rad / 1rev) = 1.07 rad / s

a) as part of rest its initial velocity is zero w or = 0

        w = w₀ + α t

        α = [tex]\frac{\omega -\omega_{o} }{t}[/tex]

        α = [tex]\frac{1.07-0}{32}[/tex]

         α = 0.0334 rad / s²

b) If we double the angular relation what will be the final velocity

       w = w₀ + (2α) t

       w = 0 + 2 0.0334 32

       w = 2.14  rad/s

We see that the angular velocity doubles.