Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Answer:
The answer is "[tex]2.73 \times 10^3 \ K[/tex] ".
Explanation:
Please find the complete question in the attachment.
The Formula for Ideal gas:
[tex]\to PV = nRT \\\\[/tex]
[tex]= ( \frac{m}{M})RT[/tex]
[tex]\to Density\ \rho = \frac{m}{V} = \frac{PM}{RT}[/tex]
[tex]\to P= pressure\\\\\to V = volume\\\\ \to n = moles\ of \ gas \\\\\to R = molar \ gas \ constant\\\\ \to T = temperature\\\\ \to m = mass \\\\ \to M = molar \ mass[/tex]
[tex]\to P(Ar) = P(He) = 1.00 atm\\\\\to T(Ar) = ?\\\\ T(He) = 273.2 \ K\\\\\to M(Ar) = 39.948 \ \frac{g}{mol}\\\\ \to M(He) = 4.0026 \ \frac{g}{mol}\\\\\to \rho(Ar) = \rho(He)\\\\\bold{Formula: } \\\\ \to \frac{P(Ar)M(Ar)}{RT(Ar)} = \frac{P(He)M(He)}{RT(He)}\\\\\to \frac{1.00 \times 39.948}{(0.08206 \times T(Ar))} = \frac{1.00 \times 4.0026}{(0.08206 \times 273.2)}\\\\ \to T(Ar) = 2.73 \times 10^3 \ K[/tex]

Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.