Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Given:
Consider the given function is
[tex]y=|8x-3|-3[/tex]
To find:
The vertex , axis of symmetry, and transformations of the parent function?
Solution:
We have,
[tex]y=|8x-3|-3[/tex]
[tex]y=\left|8\left(x-\dfrac{3}{8}\right)\right|-3[/tex]
[tex]y=8\left|x-\dfrac{3}{8}\right|-3[/tex] ...(i)
It is an absolute function.
The vertex form of an absolute function is
[tex]y=a|x-h|+k[/tex] ...(ii)
where, a is a constant, (h,k) is vertex and x=h is axis of symmetry.
From (i) and (ii), we get
[tex]a=8,h=\dfrac{3}{8},k=-3[/tex]
So,
[tex]\text{Vertex}:(h,k)=\left(\dfrac{3}{8},-3\right)[/tex]
[tex]\text{Axis of symmetry}:x=\dfrac{3}{8}[/tex]
Parent function of an absolute function is
[tex]y=|x|[/tex]
Since, a=8 therefore, parent function vertically stretched by factor 8.
[tex]h=\dfrac{3}{8}>0[/tex], so the function shifts [tex]\dfrac{3}{8}[/tex] unit right.
k=-3<0, so the function shifts 3 units down.
Therefore, the vertex is [tex]\left(\dfrac{3}{8},-3\right)[/tex] and Axis of symmetry is [tex]x=\dfrac{3}{8}[/tex]. The parent function vertically stretched by factor 8, shifts [tex]\dfrac{3}{8}[/tex] unit right and 3 units down.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.