Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Given:
Consider the given function is
[tex]y=|8x-3|-3[/tex]
To find:
The vertex , axis of symmetry, and transformations of the parent function?
Solution:
We have,
[tex]y=|8x-3|-3[/tex]
[tex]y=\left|8\left(x-\dfrac{3}{8}\right)\right|-3[/tex]
[tex]y=8\left|x-\dfrac{3}{8}\right|-3[/tex] ...(i)
It is an absolute function.
The vertex form of an absolute function is
[tex]y=a|x-h|+k[/tex] ...(ii)
where, a is a constant, (h,k) is vertex and x=h is axis of symmetry.
From (i) and (ii), we get
[tex]a=8,h=\dfrac{3}{8},k=-3[/tex]
So,
[tex]\text{Vertex}:(h,k)=\left(\dfrac{3}{8},-3\right)[/tex]
[tex]\text{Axis of symmetry}:x=\dfrac{3}{8}[/tex]
Parent function of an absolute function is
[tex]y=|x|[/tex]
Since, a=8 therefore, parent function vertically stretched by factor 8.
[tex]h=\dfrac{3}{8}>0[/tex], so the function shifts [tex]\dfrac{3}{8}[/tex] unit right.
k=-3<0, so the function shifts 3 units down.
Therefore, the vertex is [tex]\left(\dfrac{3}{8},-3\right)[/tex] and Axis of symmetry is [tex]x=\dfrac{3}{8}[/tex]. The parent function vertically stretched by factor 8, shifts [tex]\dfrac{3}{8}[/tex] unit right and 3 units down.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.