Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Answer:
The general solution of the given differential equation
[tex]y = ( c_{1} + c_{2} x ) cos3 x + ( c_{3} +c_{4} x) sin3 x[/tex]
Step-by-step explanation:
Step(I):-
Given differential equation
y⁴+18y"+81y=0
⇒ (D⁴+18D²+81)y =0
The auxiliary equation
[tex]m^4+18m^2+81 =0[/tex]
[tex](m^2)^{2} + 2 (9) m^{2} +(9)^2 = 0[/tex]
we will use formula ( a + b)² = a² + 2 a b + b²
⇒ ( m² + 9 ) ² = 0
⇒ ( m² + 9 ) ( m² + 9 ) = 0
[tex]m^{2} =-9\\m= - 3i and m=3i[/tex]
m² + 9 = 0
[tex]m² = -9\\m= -3i and m=3i[/tex]
The complex roots are 0± 3 i ,0 ± 3 i
Step(ii):-
The complementary function
[tex]y = e^{\alpha x } ( c_{1} + c_{2} x ) cos\beta x + ( c_{3} +c_{4} x) sin\beta x[/tex]
The general solution of the given differential equation
[tex]y = e^{0 x } ( c_{1} + c_{2} x ) cos3 x + ( c_{3} +c_{4} x) sin3 x[/tex]
The general solution of the given differential equation
[tex]y = ( c_{1} + c_{2} x ) cos3 x + ( c_{3} +c_{4} x) sin3 x[/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.