Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Complete Question
The daily output at a plant manufacturing chairs is approximated by the function
[tex]f(L,K) = 45\sqrt[3]{K}L^3^/^5[/tex] chairs
where L is the size of the labor force measured in hundreds
of worker-hours and K is the daily capital investment in thousands of dollars. If the plant manager has a daily budget of $13,000 and the average wage of an employee is $9.00 per hour, what combination of worker-hours (to the nearest hundred) and capital expenditures (to the nearest thousand) will yield maximum daily production?
a)200 worker-hours and $9000 in capital expenditure
b)1100 worker-hours and $3000 in capital expenditure
c)500 worker-hours and $8000 in capital expenditure
d)900 worker-hours and $5000 in capital expenditure
e)600 worker-hours and $6000 in capital expenditure
f)300 worker-hours and $10,000 in capital expenditure
Answer:
d)900 worker-hours and $5000 in capital expenditure
Step-by-step explanation:
From the question we are told that
Daily output at a plant manufacturing chairs is approximated by the function [tex]f(L,K) = 45\sqrt[3]{K}L^3^/^5[/tex]
Daily budget of $13,000
Average wage of an employee is $9.00 per hour
a) Generally the function [tex]f(L,K) = 45\sqrt[3]{K}L^3^/^5[/tex] can be use to for (a)
Mathematically solving with L=200 K=9000
[tex]f(L=200,K=9000) = (45\sqrt[3]{9000})200^3^/^5[/tex]
[tex]f(L=200,K=9000) = 45*20.8*24[/tex]
[tex]f(L=200,K=9000) = 22464[/tex]
b)Generally the function [tex]f(L,K) = 45\sqrt[3]{K}L^3^/^5[/tex] can be use to for (b)
Mathematically solving with L=1100 K=3000
[tex]f(L=1100,K=3000) = (45\sqrt[3]{3000})1100^3^/^5[/tex]
[tex]f(L=1100,K=3000) = 45*14.4*66.8[/tex]
[tex]f(L=1100,K=3000) = 43286.4[/tex]
c)Generally the function [tex]f(L,K) = 45\sqrt[3]{K}L^3^/^5[/tex] can be use to find (c)
Mathematically solving with L=500 K=8000
[tex]f(L=500,K=8000) = (45*\sqrt[3]{8000})*500^3^/^5[/tex]
[tex]f(L=500,K=8000) = 45*20*41.63[/tex]
[tex]f(L=500,K=8000) =37467[/tex]
d)Generally the function [tex]f(L,K) = 45\sqrt[3]{K}L^3^/^5[/tex] can be use to find (d)
Mathematically solving with L=900 K=5000
[tex]f(L=900,K=5000) = (45*\sqrt[3]{5000})*900^3^/^5[/tex]
[tex]f(L=900,K=5000) = 45*17.09*59.2[/tex]
[tex]f(L=900,K=5000) =45577.88[/tex]
e)Generally the function [tex]f(L,K) = 45\sqrt[3]{K}L^3^/^5[/tex] can be use to find (e)
Mathematically solving with L=600 K=6000
[tex]f(L=600,K=6000) = (45\sqrt[3]{6000})600^3^/^5[/tex]
[tex]f(L=600,K=6000) = 45*18.17*46.4[/tex]
[tex]f(L=600,K=6000) =37974[/tex]
f)Generally the function [tex]f(L,K) = 45\sqrt[3]{K}L^3^/^5[/tex] can be use to find (e)
Mathematically solving with L=600 K=6000
[tex]f(L=300,K=10,000) = (45*\sqrt[3]{10,000})*300^3^/^5[/tex]
[tex]f(L=300,K=10,000) = 45*21.5*30.6[/tex]
[tex]f(L=300,K=10,000) = 29704.2[/tex]
Therefore the function f shows maximum at L=900 K=5000
Giving the correct answer to be
d)900 worker-hours and $5000 in capital expenditure
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.