Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Given:
The function is
[tex]f(x)=\dfrac{x^2-2x-2}{x-2}[/tex]
To find:
The vertical asymptote and oblique asymptote.
Solution:
We have,
[tex]f(x)=\dfrac{x^2-2x-2}{x-2}[/tex]
To find vertical asymptote, equate denominator equal to 0.
[tex]x-2=0[/tex]
[tex]x=2[/tex]
So, the vertical asymptote is [tex]x=2[/tex].
In the given function degree of numerator is greater than denominator so, their is an oblique asymptote. To find oblique asymptote divide the numerator by denominator.
Dividing [tex]x^2-2x-2[/tex] by [tex]x-2[/tex] using synthetic division, we get
2 | 1 -2 -2
2 0
--------------------------
1 0 -2
-------------------------
Here, starting elements of bottom row represent coefficient of quotient and last element of bottom row represents the remainder.
[tex]Quotient=x, Remainder=-2[/tex]
Since, quotient is x, therefore, the oblique asymptote is [tex]y=x[/tex].
Therefore, the correct option is B.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.