Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Answer:
The weight at a distance 2R from the surface of Earth will be [tex]F'=10 N[/tex].
Explanation:
First of all, we need to find the acceleration of gravity at 2R. Using the gravitational force equation
[tex]F=G\frac{mM}{R^{2}}[/tex]
Where:
M is the mass of the earth
m is the mass of the object
G is the gravitational constant
R is the radius of the earth
We can equal the gravitational force with the second Newton's law (F=ma)
[tex]F=G\frac{mM}{R^{2}}[/tex]
[tex]mg=G\frac{mM}{R^{2}}[/tex]
We know the weight at the earth surface is 90 N, which means:
[tex]90=G\frac{mM}{R^{2}}[/tex]
Now, we have the same equation in the case of 2R as a distance from the surface of the object. Let's remember we need to use the distance from the center of the mass of the earth, so in this case, will be 3R.
[tex]F'=G\frac{mM}{(3R)^{2}}[/tex]
[tex]F'=G\frac{mM}{9R^{2}}[/tex]
[tex]F'=\frac{1}{9}G\frac{mM}{R^{2}}[/tex]
Using the above equation we have:
[tex]F'=\frac{1}{9}90[/tex]
[tex]F'=\frac{90}{9}[/tex]
Therefore, the weight at a distance 2R from the surface of Earth will be [tex]F'=10 N[/tex].
I hope it helps you!
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.