Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Water flows through this orifice meter by gravity. The orifice diameter is 50 cm and water height difference is 10 m. If the contraction coefficient is 0.62 and velocity coefficient is 0.90, the flow rate through the orifice is most nearly:

Sagot :

Answer:

Q ≅ 1.53 m³/s

Explanation:

From the given information:

The flow rate of the orifice is:

[tex]v = c_v \sqrt{2gh}[/tex]

[tex]v = 0.90 \times \sqrt{2*9.81 * 10}[/tex]

where;

[tex]Q = c_d \times \sqrt{2gh} \times A[/tex]; &

[tex]c_d = c_c \times c_v[/tex]

[tex]Q = c_c \times c_v \sqrt{2gh} \times \dfrac{\pi}{4}\times d^2[/tex]

[tex]Q = 0.90 \times 0.62 \sqrt{2*9.81*10} \times \dfrac{\pi}{4}\times 0.5^2[/tex]

[tex]Q = 0.558 \times 14.00714104 \times 0.1963495408[/tex]

Q ≅ 1.53 m³/s