Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Answer:
2^27
Step-by-step explanation:
Given the following expression:
[(2^10)^3 x (2^-10)] ÷ 2^-7
This can be easily simplified. Let us simplify the numerator first. To do that, we have
(2^10)^3 making use of the power rule of indices that says:
(A^a)^b = A^ab where a and b are powers, we have:
2^(10x3) = 2^30
Therefore the numerator becomes:
2^30 x 2^-10. Also making use of the multiplication rule that says:
A^a x A^b = A^(a + b), we have
2^30 x 2^-10 = 2^(30 – 10) = 2^20.
Now we have:
(2^20) ÷ (2^-7)
To simplify this, we need the division rule of indices which says:
A^a ÷ A^b = A^(a – b)
Therefore we have:
(2^20) ÷ (2^-7) = 2^[20 – (–7)] = 2^(20+7) = 2^27
Following are the solution to the given expression:
Given:
[tex]\to \frac{[(2^{10})^3 \times (2^{-10})]}{2^{-7}}[/tex]
To find:
value=?
Solution:
[tex]\to \frac{[(2^{10})^3 \times (2^{-10})]}{2^{-7}}[/tex]
Using formula:
[tex]\to (A^a)^b = A^{ab}\\\\\to A^a \div A^b = A^{(a - b)}[/tex]
Solve the equation:
[tex]\to \frac{[(2^{30}) \times (2^{-10})]}{2^{-7}} \\\\\to \frac{(2^{30})}{2^{-7}} \times \frac{(2^{-10})}{2^{-7}} \\\\ \to \frac{(2^{30})}{2^{-7}} \times \frac{(2^{-10})}{2^{-7}} \\\\\to (2^{30 - (-7)}) \times (2^{-10- (-7)}) \\\\\to 2^{37} \times 2^{-3} \\\\\to 2^{37 -3} \\\\\to 2^{34} \\\\[/tex]
Therefore, the final answer is "[tex]\bold{2^{34}}[/tex]".
Learn more:
brainly.com/question/1294040
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.