At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Assuming you're equipped with the error function,
[tex]\mathrm{erf}(x)=\displaystyle\frac2{\sqrt\pi}\int_0^x e^{-u^2}\,\mathrm du[/tex]
whose derivative is
[tex]\dfrac{\mathrm d}{\mathrm dx}\mathrm{erf}(x)=\dfrac2{\sqrt\pi}e^{-x^2}[/tex]
by substituting x = √y, so that x ² = y and 2x dx = dy, we have
[tex]\displastyle\int\sqrt y e^{-y^3}\,\mathrm dy=\int 2x^2 e^{-x^6}\,\mathrm dx[/tex]
Then if u = x ³ and du = 3x ² dx, we have
[tex]\displaystyle\int\sqrt y e^{-y^3}\,\mathrm dy=\int\frac23 e^{-u^2}\,\mathrm du[/tex]
[tex]\displaystyle\int\sqrt y e^{-y^3}\,\mathrm dy=\frac{\sqrt\pi}3\mathrm{erf}(u)+C[/tex]
[tex]\displaystyle\int\sqrt y e^{-y^3}\,\mathrm dy=\frac{\sqrt\pi}3\mathrm{erf}(x^3)+C[/tex]
[tex]\displaystyle\int\sqrt y e^{-y^3}\,\mathrm dy=\boxed{\frac{\sqrt\pi}3\mathrm{erf}\left(y^{\frac32}\right)+C}[/tex]
If you're not familiar with the error function, unfortunately there is no elementary antiderivative...
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.