Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Answer:
Solving the expression [tex]3x^2-2x=-1[/tex] we get: [tex]\mathbf{x=\frac{1+\sqrt{2}i }{3}\:or\:x=\frac{1-\sqrt{2}i }{3}}[/tex]
Step-by-step explanation:
We need to solve the expression: [tex]3x^2-2x=-1[/tex]
This is a quadratic expression and it can be solved using quadratic formula
Solving:
[tex]3x^2-2x=-1\\[/tex]
we can write it as:
[tex]3x^2-2x+1=0[/tex]
The quadratic formula is: [tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]
where a = 3, b = -2 and c= 1
Putting values and solving:
[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\\x=\frac{-(-2)\pm\sqrt{(-2)^2-4(3)(1)}}{2(3)}\\x=\frac{2\pm\sqrt{4-12}}{2(3)}\\x=\frac{2\pm\sqrt{-8}}{6}\\We\:know\:that\:\sqrt{-1}=i\\x=\frac{2\pm\sqrt{8}\sqrt{-1} }{6} \\We\:know\:\sqrt{8}=\sqrt{2\times 2 \times 2}=\sqrt{2^2 \times 2}=2\sqrt{2} \\x=\frac{2\pm2\sqrt{2}i }{6}\\Now,\\x=\frac{2+2\sqrt{2}i }{6}\:or\:x=\frac{2-2\sqrt{2}i }{6}\\x=\frac{2(1+\sqrt{2}i) }{6}\:or\:x=\frac{2(1-\sqrt{2}i) }{6}\\x=\frac{1+\sqrt{2}i }{3}\:or\:x=\frac{1-\sqrt{2}i }{3}[/tex]
So, solving the expression [tex]3x^2-2x=-1[/tex] we get: [tex]\mathbf{x=\frac{1+\sqrt{2}i }{3}\:or\:x=\frac{1-\sqrt{2}i }{3}}[/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.