Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Answer:
The perimeter of the isosceles right triangle is 68.28 cm.
Step-by-step explanation:
Given;
area of the isosceles right triangle, A = 200 cm²
let the two equal sides of the triangle = base (b) and height (h)
Area of the isosceles right triangle is calculated as;
[tex]A= \frac{1}{2} bh \\\\But, b = h\\\\A = \frac{1}{2} b^2\\\\200 = \frac{1}{2} b^2\\\\400 = b^2\\\\\sqrt{400} = b\\\\20 \ cm = b[/tex]
let the hypotenuse side of the isosceles right triangle = c
c² = b² + h²
c² = 20² + 20²
c² = 800
c = √800
c = 28.28 cm
The perimeter of the isosceles right triangle is calculated as;
P = b + h + c
P = 20 cm + 20 cm + 28.28 cm
P = 68.28 cm
Therefore, the perimeter of the isosceles right triangle is 68.28 cm.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.