Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Answer:
Approximately [tex]9.62[/tex].
Explanation:
[tex]y_1 = 4.85\, \sin[(4.35\, x - 1270\, t) + 0][/tex].
[tex]y_2 = 4.85\, \sin[(4.35\, x - 1270\, t) + (-0.250)][/tex].
Notice that sine waves [tex]y_1[/tex] and [tex]y_2[/tex] share the same frequency and wavelength. The only distinction between these two waves is the [tex](-0.250)[/tex] in [tex]y_2\![/tex].
Therefore, the sum [tex](y_1 + y_2)[/tex] would still be a sine wave. The amplitude of [tex](y_1 + y_2)\![/tex] could be found without using calculus.
Consider the sum-of-angle identity for sine:
[tex]\sin(a + b) = \sin(a) \cdot \cos(b) + \cos(a) \cdot \sin(b)[/tex].
Compare the expression [tex]\sin(a + b)[/tex] to [tex]y_2[/tex]. Let [tex]a = (4.35\, x - 1270)[/tex] and [tex]b = (-0.250)[/tex]. Apply the sum-of-angle identity of sine to rewrite [tex]y_2\![/tex].
[tex]\begin{aligned}y_2 &= 4.85\, \sin[(\underbrace{4.35\, x - 1270\, t}_{a}) + (\underbrace{-0.250}_{b})]\\ &= 4.85 \, [\sin(4.35\, x - 1270\, t)\cdot \cos(-0.250) \\ &\quad\quad\quad\; + \cos(4.35\, x - 1270\, t)\cdot \sin(-0.250)] \end{aligned}[/tex].
Therefore, the sum [tex](y_1 + y_2)[/tex] would become:
[tex]\begin{aligned}& y_1 + y_2\\[0.5em] &= 4.85\, [\sin(4.35\, x - 1270\, t) \\ &\quad \quad \quad\;+\sin(4.35\, x - 1270\, t)\cdot \cos(-0.250) \\ &\quad\quad\quad\; + \cos(4.35\, x - 1270\, t)\cdot \sin(-0.250)] \\[0.5em] &= 4.85\, [\sin(4.35\, x - 1270\, t)\cdot (1 + \cos(-0.250)) \\ &\quad\quad\quad\; + \cos(4.35\, x - 1270\, t)\cdot \sin(-0.250)] \end{aligned}[/tex].
Consider: would it be possible to find [tex]m[/tex] and [tex]c[/tex] that satisfy the following hypothetical equation?
[tex]\begin{aligned}& (4.85\, m)\cdot \sin((4.35\, x - 1270\, t) + c)\\&= 4.85\, [\sin(4.35\, x - 1270\, t)\cdot (1 + \cos(-0.250)) \\ &\quad\quad\quad\; + \cos(4.35\, x - 1270\, t)\cdot \sin(-0.250)] \end{aligned}[/tex].
Simplify this hypothetical equation:
[tex]\begin{aligned}& m\cdot \sin((4.35\, x - 1270\, t) + c)\\&=\sin(4.35\, x - 1270\, t)\cdot (1 + \cos(-0.250)) \\ &\quad\quad + \cos(4.35\, x - 1270\, t)\cdot \sin(-0.250)\end{aligned}[/tex].
Apply the sum-of-angle identity of sine to rewrite the left-hand side:
[tex]\begin{aligned}& m\cdot \sin((4.35\, x - 1270\, t) + c)\\[0.5em]&=m\, \sin(4.35\, x - 1270\, t)\cdot \cos(c) \\ &\quad\quad + m\, \cos(4.35\, x - 1270\, t)\cdot \sin(c) \\[0.5em] &=\sin(4.35\, x - 1270\, t)\cdot (m\, \cos(c)) \\ &\quad\quad + \cos(4.35\, x - 1270\, t)\cdot (m\, \sin(c)) \end{aligned}[/tex].
Compare this expression with the right-hand side. For this hypothetical equation to hold for all real [tex]x[/tex] and [tex]t[/tex], the following should be satisfied:
[tex]\displaystyle 1 + \cos(-0.250) = m\, \cos(c)[/tex], and
[tex]\displaystyle \sin(-0.250) = m\, \sin(c)[/tex].
Consider the Pythagorean identity. For any real number [tex]a[/tex]:
[tex]{\left(\sin(a)\right)}^{2} + {\left(\cos(a)\right)}^{2} = 1^2[/tex].
Make use of the Pythagorean identity to solve this system of equations for [tex]m[/tex]. Square both sides of both equations:
[tex]\displaystyle 1 + 2\, \cos(-0.250) + {\left(\cos(-0.250)\right)}^2= m^2\, {\left(\cos(c)\right)}^2[/tex].
[tex]\displaystyle {\left(\sin(-0.250)\right)}^{2} = m^2\, {\left(\sin(c)\right)}^2[/tex].
Take the sum of these two equations.
Left-hand side:
[tex]\begin{aligned}& 1 + 2\, \cos(-0.250) + \underbrace{{\left(\cos(-0.250)\right)}^2 + {\left(\sin(-0.250)\right)}^2}_{1}\\ &= 1 + 2\, \cos(-0.250) + 1 \\ &= 2 + 2\, \cos(-0.250) \end{aligned}[/tex].
Right-hand side:
[tex]\begin{aligned} &m^2\, {\left(\cos(c)\right)}^2 + m^2\, {\left(\sin(c)\right)}^2 \\ &= m^2\, \left( {\left(\sin(c)\right)}^2 + {\left(\cos(c)\right)}^2\right)\\ &= m^2\end{aligned}[/tex].
Therefore:
[tex]m^2 = 2 + 2\, \cos(-0.250)[/tex].
[tex]m = \sqrt{2 + 2\, \cos(-0.250)} \approx 1.98[/tex].
Substitute [tex]m = \sqrt{2 + 2\, \cos(-0.250)}[/tex] back to the system to find [tex]c[/tex]. However, notice that the exact value of [tex]c\![/tex] isn't required for finding the amplitude of [tex](y_1 + y_2) = (4.85\, m)\cdot \sin((4.35\, x - 1270\, t) + c)[/tex].
(Side note: one possible value of [tex]c[/tex] is [tex]\displaystyle \arccos\left(\frac{1 + \cos(0.250)}{\sqrt{2 \times (1 + \cos(0.250))}}\right) \approx 0.125[/tex] radians.)
As long as [tex]\! c[/tex] is a real number, the amplitude of [tex](y_1 + y_2) = (4.85\, m)\cdot \sin((4.35\, x - 1270\, t) + c)[/tex] would be equal to the absolute value of [tex](4.85\, m)[/tex].
Therefore, the amplitude of [tex](y_1 + y_2)[/tex] would be:
[tex]\begin{aligned}|4.85\, m| &= 4.85 \times \sqrt{2 + 2\, \cos(-0.250)} \\&\approx 9.62 \end{aligned}[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.