Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

GETS BRAINLIEST AND 30 POINTS ! Describe the dilation of a line segment by a scale factor of 1/2 centered at the origin

Sagot :

Answer:

Following are the solution to this question:

Step-by-step explanation:

A transform is a dilation that has changed the size and shape of such a geometric form.  

Segment of let line is:

[tex]\to x_i=x_n+t(x_{n+1} -x_n)\\\\\to y_i=y_n+t(y_{n+1} -y_n)[/tex]

[tex]scale \ factor = \frac{1}{2}[/tex]

The dialling is based on its origin and also the line section, in order to provide new coordinates [tex](\frac{x_n}{2}, \frac{y_n}{2}) , (\frac{x_{n+1}}{2}, \frac{y_{n+1}}{2})[/tex] So, the line segment is unchanged, and also has shorter.