Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Answer:
The moment of inertia of disc about own axis is 1 kg-m².
Explanation:
Given that,
Mass of ring m= 1 kg
Moment of inertia of ring at diameter [tex](I_{r})_{d}=1\ kg\ m^{2}[/tex]
The radius of metallic ring and uniform disc both are equal.
So, [tex]R_{r}=R_{d}[/tex]
We need to calculate the value of radius of ring and disc
Using theorem of perpendicular axes
[tex](I_{r})_{c}=2\times (I_{r})_{d}[/tex]
Put the value into the formula
[tex](I_{r})_{c}=2\times1[/tex]
[tex](I_{r})_{c}=2\ kg\ m^2[/tex]
Put the value of moment of inertia
[tex]MR_{r}^2=2[/tex]
[tex]R_{r}^2=\dfrac{2}{M}[/tex]
Put the value of M
[tex]R_{r}^2=\dfrac{2}{1}[/tex]
So, [tex]R_{r}^2=R_{d}^2=2\ m[/tex]
We need to calculate the moment of inertia of disc about own axis
Using formula of moment of inertia
[tex]I_{d}=\dfrac{1}{2}MR_{d}^2[/tex]
Put the value into the formula
[tex]I_{d}=\dfrac{1}{2}\times1\times2[/tex]
[tex]I_{d}=1\ kg\ m^2[/tex]
Hence, The moment of inertia of disc about own axis is 1 kg-m².
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.