Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

An electron emitted from a filament is travelling at 1.5 x 105 m/s when it enters an acceleration of an electron gun in a television tube. It is constantly accelerated while travelling 0.01 m, and leaves the gun at 5.4 x 106 m/s. What was the acceleration of the electron

Sagot :

Answer:

The acceleration of the electron is 1.457 x 10¹⁵ m/s².

Explanation:

Given;

initial velocity of the emitted electron, u = 1.5 x 10⁵ m/s

distance traveled by the electron, d = 0.01 m

final velocity of the electron, v = 5.4 x 10⁶ m/s

The acceleration of the electron is calculated as;

v² = u² + 2ad

(5.4 x 10⁶)² = (1.5 x 10⁵)² + (2 x 0.01)a

(2 x 0.01)a = (5.4 x 10⁶)² - (1.5 x 10⁵)²

(2 x 0.01)a = 2.91375 x 10¹³

[tex]a = \frac{2.91375 \ \times \ 10^{13}}{2 \ \times \ 0.01} \\\\a = 1.457 \ \times \ 10^{15} \ m/s^2[/tex]

Therefore, the acceleration of the electron is 1.457 x 10¹⁵ m/s².