Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Answer:
[tex]\boxed {\boxed {\sf \frac{14}{3} \ or \ 4.6667 \ m/s^2}}[/tex]
Explanation:
Acceleration can be found using the following formula.
[tex]a=\frac{v_f-v_1}{t}[/tex]
where [tex]v_f[/tex] is the final velocity, [tex]v_i[/tex] is the initial velocity and t is the time.
The lizard started at 12.0 m/s and accelerated up to its final velocity of 40.0 m/s in 6 seconds.
Therefore:
[tex]v_f= 40.0 \ m/s \\v_i= 12.0 \ m/s \\t= 6 \ s[/tex]
Substitute the variables into the formula.
[tex]a=\frac{40.0 \ m/s - 12.0 \ m/s}{6 \ s}[/tex]
Solve the numerator first and subtract.
- 40.0 m/s - 12.0 m/s= 28 m/s
[tex]a=\frac{ 28 \ m/s}{6 \ s}[/tex]
Divide.
[tex]a= \frac{14}{3} \ m/s/s= \frac{14}{3} \ m/s^2[/tex]
[tex]a=4.66667 \ m/s^2[/tex]
The lizard's average acceleration is 14/3 or 4.66667 m/s²
Answer:
4 2/3 m/s
Explanation:
first thing to find the average acceleration is to figure out what the increase in speed was, we can do that by subtracting the original speed from the speed after accelerating, that looks like:
40 - 12 = 28
so the lizard accelerated 28 m/s in 6 seconds, to find the average increase in m/s every second, we divide the m/s by the seconds, which gives us:
28 / 6 = 4.66 = 4 2/3 m/s
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.