Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Answer:
The final speed of the arrow when it hits the target is 45.63 m/s.
Explanation:
Given;
spring constant of the bow, k = 458 N/m
extension of the bow, x = 0.72 m
mass of the arrow, m = 0.0925 kg
let the initial speed of the arrow after being fired = u
Apply the law of conservation of energy, the elastic potential energy of the bow will be converted to kinetic energy of the arrow.
[tex]\frac{1}{2} kx^2 = \frac{1}{2} mu^2\\\\kx^2 = mu^2\\\\u^2 = \frac{kx^2}{m} \\\\u= \sqrt{\frac{kx^2}{m} } \\\\u = 50.66 \ m/s[/tex]
The speed of the arrow when it hits a target 24.7 m above the ground is calculated as;
v² = u² + 2gs
where;
v is the final speed when the arrow hits the target
g is acceleration due to gravity = (-9.8 m/s², upward motion)
v² = 50.66² + 2(-9.8)24.7
v² = 2566.44 - 484.12
v² = 2082.32
v = √2082.32
v = 45.63 m/s
Therefore, the final speed of the arrow when it hits the target is 45.63 m/s.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.