Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
[tex](x;\ y)-the\ coordinates\ any\ point\ on\ the \ parabola.\\\\Distance\ between\ the\ point\ (x;\ y)\ and\ the\ focus\ (-5;\ 5)\\and\ distance\ between\ the\ point\ (x;\ y)\ and\ a\ direct\ are\ equal.\\\\Distance\ between\ (x;\ y)\ and\ (-5;\ 5):\\\sqrt{(x-(-5))^2+(y-5)^2}=\sqrt{(x+5)^2+(y-5)^2}\\\\Distance\ between\ (x;\ y)\ and\ y=-1:\\|y-(-1)|=|y+1|\\\\We\ equate\ the\ two\ expressions:\\\sqrt{(x+5)^2+(y-5)^2}=|y+1|[/tex]
[tex]Square\ both\ sides:\\(x+5)^2+(y-5)^2=(y+1)^2\\\\Use:(a\pm b)^2=a^2\pm2ab+b^2\\\\x^2+2\cdot x\cdot5+5^2+y^2-2\cdot y\cdot5+5^2=y^2+2\cdot y\cdot1+1^2\\x^2+10x+25+\not y^2-10y+25=\not y^2+2y+1\\x^2+10x-10y+50=2y+1\\2y+1=x^2+10x-10y+50\ \ \ \ |subtract\ 1\ from\ both\ sides\\2y=x^2+10x-10y+49\ \ \ \ |add\ 10y\ to\ both\ sides\\12y=x^2+10x+49\ \ \ \ |divide\ both\ sides\ by\ 12\\\\\boxed{y=\frac{1}{12}x^2+\frac{5}{6}x+\frac{49}{12}}[/tex]
[tex]Square\ both\ sides:\\(x+5)^2+(y-5)^2=(y+1)^2\\\\Use:(a\pm b)^2=a^2\pm2ab+b^2\\\\x^2+2\cdot x\cdot5+5^2+y^2-2\cdot y\cdot5+5^2=y^2+2\cdot y\cdot1+1^2\\x^2+10x+25+\not y^2-10y+25=\not y^2+2y+1\\x^2+10x-10y+50=2y+1\\2y+1=x^2+10x-10y+50\ \ \ \ |subtract\ 1\ from\ both\ sides\\2y=x^2+10x-10y+49\ \ \ \ |add\ 10y\ to\ both\ sides\\12y=x^2+10x+49\ \ \ \ |divide\ both\ sides\ by\ 12\\\\\boxed{y=\frac{1}{12}x^2+\frac{5}{6}x+\frac{49}{12}}[/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.