Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Hello,
we have the function:
f(x)=4x --> y= 4x
To find the inverse we have to change "x" by "y" and "y" by "x", as following:
x=4y
Now, we isolate "y":
[tex]y= \frac{x}{4} -->\boxed{f'(x)= \frac{x}{4}}[/tex]
we have the function:
f(x)=4x --> y= 4x
To find the inverse we have to change "x" by "y" and "y" by "x", as following:
x=4y
Now, we isolate "y":
[tex]y= \frac{x}{4} -->\boxed{f'(x)= \frac{x}{4}}[/tex]
Ans: Inverse of f(x) is [tex] \frac{x}{4} [/tex]
Explanation:
To find the inverse of the function f(x) = 4x, follow these steps:
Step-1:
We can write f(x) as y. Like f(x) = y; therefore,
y = 4x --- (1)
Step-2:
Now replace x with y and y with x of equation (1):
x = 4y --- (2)
Step-3:
Now solve equation (2) for y:
x = 4y
y = [tex] \frac{x}{4} [/tex] --- (3)
Equation (3) represent the inverse of f(x). Hence the inverse of f(x) is [tex]\boxed{\frac{x}{4} }[/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.