At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Answer:
-32.5 * 10^-5 J
Explanation:
The potential energy of this system of charges is;
Ue = kq1q2/r
Where;
k is the Coulumb's constant
q1 and q2 are the magnitudes of the charges
r is the distance of separation between the charges
Substituting values;
Ue = 9.0×10^9 N⋅m2/C2 * 5.5 x 10^-8 C *( -2.3 x10^-8) C/(3.5 * 10^-2)
Ue= -32.5 * 10^-5 J
The potential energy of this two particle system relative to the potential energy at infinite separation is [tex]\bold {-32.5x 10^-^5\ J}[/tex].
The potential energy of this system of charges,
[tex]\bold {Ue = k\dfrac{q1q2}{r}}[/tex]
Where;
k - Coulumb's constant
q1 and q2 - magnitudes of the charges
r - distance between the charges
Put the values in the equation,
[tex]\bold {Ue = 9.0x10^9\times \dfrac {5.5 x 10^{-8} C \times -2.3 x10^{-8} C}{3.5 \times 10^{-2}}}\\\\\bold {Ue= -32.5 x 10^-^5\ J}[/tex]
Therefore, the the potential energy of this two particle system relative to the potential energy at infinite separation is [tex]\bold {-32.5x 10^-^5\ J}[/tex].
To know more about charges,
https://brainly.com/question/13248422
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.