Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Answer:
-32.5 * 10^-5 J
Explanation:
The potential energy of this system of charges is;
Ue = kq1q2/r
Where;
k is the Coulumb's constant
q1 and q2 are the magnitudes of the charges
r is the distance of separation between the charges
Substituting values;
Ue = 9.0×10^9 N⋅m2/C2 * 5.5 x 10^-8 C *( -2.3 x10^-8) C/(3.5 * 10^-2)
Ue= -32.5 * 10^-5 J
The potential energy of this two particle system relative to the potential energy at infinite separation is [tex]\bold {-32.5x 10^-^5\ J}[/tex].
The potential energy of this system of charges,
[tex]\bold {Ue = k\dfrac{q1q2}{r}}[/tex]
Where;
k - Coulumb's constant
q1 and q2 - magnitudes of the charges
r - distance between the charges
Put the values in the equation,
[tex]\bold {Ue = 9.0x10^9\times \dfrac {5.5 x 10^{-8} C \times -2.3 x10^{-8} C}{3.5 \times 10^{-2}}}\\\\\bold {Ue= -32.5 x 10^-^5\ J}[/tex]
Therefore, the the potential energy of this two particle system relative to the potential energy at infinite separation is [tex]\bold {-32.5x 10^-^5\ J}[/tex].
To know more about charges,
https://brainly.com/question/13248422
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.