Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Answer:
3.28 degree
Explanation:
We are given that
Distance between the ruled lines on a diffraction grating, d=1900nm=[tex]1900\times 10^{-9}m[/tex]
Where [tex]1nm=10^{-9} m[/tex]
[tex]\lambda_2=400nm=400\times10^{-9}m[/tex]
[tex]\lambda_1=700nm=700\times 10^{-9}m[/tex]
We have to find the angular width of the gap between the first order spectrum and the second order spectrum.
We know that
[tex]\theta=sin^{-1}(\frac{m\lambda}{d})[/tex]
Using the formula
m=1
[tex]\theta_1=sin^{-1}(\frac{1\times700\times 10^{-9}}{1900\times 10^{-9}})[/tex]
[tex]\theta=21.62^{\circ}[/tex]
Now, m=2
[tex]\theta_2=sin^{-1}(\frac{2\times400\times 10^{-9}}{1900\times 10^{-9}})[/tex]
[tex]\theta_2=24.90^{\circ}[/tex]
[tex]\Delta \theta=\theta_2-\theta_1[/tex]
[tex]\Delta \theta=24.90-21.62[/tex]
[tex]\Delta \theta=3.28^{\circ}[/tex]
Hence, the angular width of the gap between the first order spectrum and the second order spectrum=3.28 degree
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.