Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Answer:
3.28 degree
Explanation:
We are given that
Distance between the ruled lines on a diffraction grating, d=1900nm=[tex]1900\times 10^{-9}m[/tex]
Where [tex]1nm=10^{-9} m[/tex]
[tex]\lambda_2=400nm=400\times10^{-9}m[/tex]
[tex]\lambda_1=700nm=700\times 10^{-9}m[/tex]
We have to find the angular width of the gap between the first order spectrum and the second order spectrum.
We know that
[tex]\theta=sin^{-1}(\frac{m\lambda}{d})[/tex]
Using the formula
m=1
[tex]\theta_1=sin^{-1}(\frac{1\times700\times 10^{-9}}{1900\times 10^{-9}})[/tex]
[tex]\theta=21.62^{\circ}[/tex]
Now, m=2
[tex]\theta_2=sin^{-1}(\frac{2\times400\times 10^{-9}}{1900\times 10^{-9}})[/tex]
[tex]\theta_2=24.90^{\circ}[/tex]
[tex]\Delta \theta=\theta_2-\theta_1[/tex]
[tex]\Delta \theta=24.90-21.62[/tex]
[tex]\Delta \theta=3.28^{\circ}[/tex]
Hence, the angular width of the gap between the first order spectrum and the second order spectrum=3.28 degree
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.