Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

The distance between the ruled lines on a diffraction grating is 1900 nm. The grating is illuminated at normal incidence with a parallel beam of white light in the 400 nm to 700 nm wavelength band. What is the angular width of the gap between the first order spectrum and the second order spectrum

Sagot :

Answer:

3.28 degree

Explanation:

We are given that

Distance between the ruled lines on a diffraction grating, d=1900nm=[tex]1900\times 10^{-9}m[/tex]

Where [tex]1nm=10^{-9} m[/tex]

[tex]\lambda_2=400nm=400\times10^{-9}m[/tex]

[tex]\lambda_1=700nm=700\times 10^{-9}m[/tex]

We have to find  the angular width of the gap between the first order spectrum and the second order spectrum.

We know that

[tex]\theta=sin^{-1}(\frac{m\lambda}{d})[/tex]

Using the formula

m=1

[tex]\theta_1=sin^{-1}(\frac{1\times700\times 10^{-9}}{1900\times 10^{-9}})[/tex]

[tex]\theta=21.62^{\circ}[/tex]

Now, m=2

[tex]\theta_2=sin^{-1}(\frac{2\times400\times 10^{-9}}{1900\times 10^{-9}})[/tex]

[tex]\theta_2=24.90^{\circ}[/tex]

[tex]\Delta \theta=\theta_2-\theta_1[/tex]

[tex]\Delta \theta=24.90-21.62[/tex]

[tex]\Delta \theta=3.28^{\circ}[/tex]

Hence, the angular width of the gap between the first order spectrum and the second order spectrum=3.28 degree