Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Answer:
a.)Point C will be either (4.82, 7.41) or ( -4.82, 2.59)
b.) -x² + 2x + 6y - y² - 5= 0 , 8y - 4x = 11
Step-by-step explanation:
As given A(2,1,3) and B(0,5,0)
a.)
We have to find C in the xy-plane
⇒ C is of the form (x, y, 0) ( Because in xy plane , z coordinate is zero)
Now, given AB and BC are the legs of the right triangle .
AB = (0, 5, 0) - (2, 1, 3) = ( -2, 4, -3)
BC = (x, y, 0) - (0, 5, 0) = ( x, y-5, 0)
As AB and BC are legs of triangle
⇒AB is perpendicular to BC
⇒(AB).(BC) = 0
⇒( -2, 4, -3).( x, y-5, 0) = 0
⇒ -2x + 4(y-5) -0 = 0
⇒ -2x + 4y- 20 = 0
⇒ -x + 2y- 10 = 0
⇒ 2y = 10 + x
⇒ y = 5 + [tex]\frac{x}{2}[/tex] ......(1)
As ABC is making an isosceles right triangle
It means two sides of the triangle are equal
Now,
|AB| = √(-2)² + (4)² + (-3)² = √4+16+9 = √29
|BC| = √(x)² + (y-5)² + 0² = √(x)² + (y-5)²
Now,
AS AB = BC
⇒|AB| = |BC|
⇒|AB|² = |BC|²
⇒29 = (x)² + (y-5)²
⇒29 = (x)² + (5 + [tex]\frac{x}{2}[/tex] -5)²
⇒29 = (x)² + ( [tex]\frac{x}{2}[/tex] )²
⇒29 = x²( 1 + [tex]\frac{1}{4}[/tex] ) = x²( [tex]\frac{5}{4}[/tex] )
⇒ x² = [tex]\frac{116}{5}[/tex] = 23.2
⇒ x = 4.82 , -4.82
⇒y = 7.41 , 2.59
so, Point C will be either (4.82, 7.41) or ( -4.82, 2.59)
b.)
As given AB is the hypotenuse of the right triangle
S, AC and CB will perpendicular to each other
Now,
AC = (x, y, 0) - ( 2, 1, 3) = ( x-2, y-1, -3)
CB = (0, 5, 0) - (x, y, 0) = (-x, 5-y, 0)
As, AC and CB is perpendicular
⇒(AC).(CB) = 0
⇒( x-2, y-1, -3).(-x, 5-y, 0) = 0
⇒(x-2)(-x) + (y-1)(5-y) - 0 = 0
⇒-x² + 2x + 5y - y² - 5 + y = 0
⇒-x² + 2x + 6y - y² - 5= 0 ..........(2)
As ABC is making an isosceles right triangle
It means two sides of the triangle are equal
Now,
|AC| = √(x-2)² + (y-1)² + (0-3)² = √(x-2)² + (y-1)² + 9
|BC| = √(x)² + (y-5)² + 0² = √(x)² + (y-5)²
Now,
AS AC = BC
⇒|AC| = |BC|
⇒|AC|² = |BC|²
⇒(x-2)² + (y-1)² + 9 = (x)² + (y-5)²
⇒x² + 4 - 4x + y² + 1 - 2y + 9 = x² + y² + 25 - 10y
⇒ 4 - 4x + 1 - 2y + 9 = 25 - 10y
⇒14 - 4x - 2y = 25 - 10y
⇒10y - 2y - 4x = 25 - 14
⇒8y - 4x = 11 ........(3)
Now, we have 2 equations
-x² + 2x + 6y - y² - 5= 0 , 8y - 4x = 11
Solve these equations to find x, y
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.