Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Answer:
Explanation:
a) the steady-state, 1-D incompressible and no energy generation equation can be expressed as follows:
[tex]\dfrac{\partial^2T}{\partial x^2}= \ 0 \ ; \ if \ T = f(x) \\ \\ \dfrac{\partial^2T}{\partial y^2}= \ 0 \ ; \ if \ T = f(y) \\ \\ \dfrac{\partial^2T}{\partial z^2}= \ 0 \ ; \ if \ T = f(z)[/tex]
b) For a transient, 1-D, constant with energy generation
suppose T = f(x)
Then; the equation can be expressed as:
[tex]\dfrac{\partial^2T}{\partial x^2} + \dfrac{Q_g}{k} = \dfrac{1}{\alpha} \dfrac{dT}{dC}[/tex]
where;
[tex]Q_g[/tex] = heat generated per unit volume
[tex]\alpha[/tex] = Thermal diffusivity
c) The heat equation for a cylinder steady-state with 2-D constant and no compressible energy generation is:
[tex]\dfrac{1}{r}\times \dfrac{\partial}{\partial r }( r* \dfrac{\partial \ T }{\partial \ r}) + \dfrac{\partial^2 T}{\partial z^2 }= 0[/tex]
where;
The radial directional term = [tex]\dfrac{1}{r}\times \dfrac{\partial}{\partial r }( r* \dfrac{\partial \ T }{\partial \ r})[/tex] and the axial directional term is [tex]\dfrac{\partial^2 T}{\partial z^2 }[/tex]
d) The heat equation for a wire going through a furnace is:
[tex]\dfrac{\partial ^2 T}{\partial z^2} = \dfrac{1}{\alpha}\Big [\dfrac{\partial ^2 T}{\partial ^2 t}+ V_z \dfrac{\partial ^2T}{\partial ^2z} \Big ][/tex]
since;
the steady-state is zero, Then:
[tex]\dfrac{\partial ^2 T}{\partial z^2} = \dfrac{1}{\alpha}\Big [ V_z \dfrac{\partial ^2T}{\partial ^2z} \Big ][/tex]'
e) The heat equation for a sphere that is transient, 1-D, and incompressible with energy generation is:
[tex]\dfrac{1}{r} \times \dfrac{\partial}{\partial r} \Big ( r^2 \times \dfrac{\partial T}{\partial r} \Big ) + \dfrac{Q_q}{K} = \dfrac{1}{\alpha}\times \dfrac{\partial T}{\partial t}[/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.