Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

A brass alloy rod having a cross sectional area of 100 mm2 and a modulus of 110 GPa is subjected to a tensile load. Plastic deformation was observed to begin at a load of 39872 N. a. Determine the maximum stress that can be applied without plastic deformation. b. If the maximum length to which a specimen may be stretched without causing plastic deformation is 67.21 mm, what is the original specimen length

Sagot :

Answer:

a) the maximum stress that can be applied without plastic deformation is 398.72 N/mm²  

b) length of the specimen is 66.97 mm

Explanation:

Given the data in the question;

a) Determine the maximum stress that can be applied without plastic deformation

when know that; maximum stress σ[tex]_{max}[/tex]  = F / A

where F is the force in the rod ( 39872 N )

A is the cross-sectional area of the rod ( 100 mm² )

so we substitute;

σ[tex]_{max}[/tex]  = 39872 N / 100 mm²

σ[tex]_{max}[/tex]  = 398.72 N/mm²

Therefore, the maximum stress that can be applied without plastic deformation is 398.72 N/mm²  

b)  

strain in the members can be calculated using the expression

ε = σ / E

where σ is the stress in the rod

E is the module of elasticity (  110 GPa = 110000 N/mm² )

(Sl-L) / L = σ/E

where Sl-L is the change in length of the member

L is the original length of the specimen

so we substitute

(67.21 - L) / L = 398.72 / 110000

110000( 67.21 - L) = 398.72L

7393100 - 110000L = 398.72L

7393100 = 398.72L+ 110000L

7393100 = 110398.72L

L = 7393100 / 110398.72

L = 66.97 mm

Therefore; length of the specimen is 66.97 mm