Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Answer and Explanation: No, the explanation is not plausible. The puck sliding on the ice is an example of the Principle of Conservation of Energy, which can be enunciated as "total energy of a system is constant. It can be changed or transferred but the total is always the same".
When a player hit the pluck, it starts to move, gaining kinetic energy (K). As it goes up a ramp, kinetic energy decreases and potential energy (P) increases until it reaches its maximum. When potential energy is maximum, kinetic energy is zero and vice-versa.
So, at the beginning of the movement the puck only has kinetic energy. At the end, it gains potential energy until its maximum.
The representation is as followed:
[tex]K_{i}+P_{i}=K_{f}+P_{f}[/tex]
[tex]K_{i}+0=0+P_{f}[/tex]
[tex]\frac{1}{2}mv^{2} = mgh[/tex]
As we noticed, mass of the object can be cancelled from the equation, making height be:
[tex]h=\frac{v^{2}}{2g}[/tex]
So, the height the puck reaches depends on velocity and acceleration due to gravity, not mass of the puck.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.