Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Answer:
a) The stress in the bar when F is 32,000 is approximately 7,100 psi
b) The load P that can be supported by the bar if the axial stress must not exceed is approximately 110,000 lb
Explanation:
The question topic relates to stresses in structures;
The given parameters of the steel bar are;
The width of the steel bar, W = 4.0 in.
The thickness of the steel bar, t = 1.125 in.
The formula for stress in a bar is given as follows;
[tex]Stress, \sigma = \dfrac{Force, F}{Area, A}[/tex]
The cross sectional area of bar, A = W × t = 4.0 in. × 1.125 in. = 4.5 in.²
∴ The cross sectional area of bar, A = 4.5 in.²
a) The stress in the bar for F = 32,000 lb, is given as follows;
[tex]The \ stress \ in \ the \ bar , \sigma = \dfrac{ F}{A} = \dfrac{32,000 \ lb}{4.5 \ in.^2} = 7,111.\overline 1[/tex]
The stress in the bar when F is 32,000 is σ = 7,111.[tex]\overline 1[/tex] psi ≈ 7,100 psi
b) The load P that can be supported by the bar if the axial stress must not exceed, σ = 25,000 psi is given as follows;
[tex]\sigma = \dfrac{ P}{A}[/tex]
Therefore;
P = σ × A = 25,000 psi × 4.5 in² = 112,500 lb
For the axial stress of 25,000 psi not to be exceeded, the maximum load that can be supported by the bar, P = 112,500 lb ≈ 110,000 lb.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.