Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Answer:
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{4x-sin(4x)}{16} +c[/tex]
Step-by-step explanation:
Given
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx[/tex]
Required
Evaluate
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx[/tex]
Rewrite as:
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \int\limits {cos(x)\ sin(x)\ sin(2x)} \, dx[/tex]
In trigonometry:
[tex]sin(2x) = 2\ sin(x)\ cos(x)[/tex]
Divide both sides by 2
[tex]\frac{1}{2}sin(2x) = \frac{2\ sin(x)\ cos(x) }{2}[/tex]
[tex]\frac{1}{2}sin(2x) = sin(x)\ cos(x)[/tex]
[tex]\frac{1}{2}sin(2x) = cos(x)\ sin(x)[/tex]
Substitute [tex]\frac{1}{2}sin(2x)[/tex] for [tex]cos(x)\ sin(x)[/tex]
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \int\limits {\frac{1}{2}sin(2x)\ sin(2x)} \, dx[/tex]
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \int\limits {\frac{1}{2}sin^2(2x)} \, dx[/tex]
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{2}\int\limits {sin^2(2x)} \, dx[/tex]
Let [tex]u = 2x[/tex]
Differentiate:
[tex]du = 2 \ dx[/tex]
Make [tex]dx[/tex] the subject
[tex]dx = \frac{1}{2}du[/tex]
Substitute [tex]\frac{1}{2}du[/tex] for [tex]dx[/tex]
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{2}\int\limits {sin^2(2x)} \, \frac{1}{2}du[/tex]
Substitute 2x for u
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{2}\int\limits {sin^2(u)} \, \frac{1}{2}du[/tex]
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{2}*\frac{1}{2}\int\limits {sin^2(u)} \, du[/tex]
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}\int\limits {sin^2(u)} \, du[/tex]
At this point, we apply the reduction formula:
Which is:
[tex]\int\limits {sin^n(u)} \, du = \frac{n-1}{2}\int\limits sin^{n-2}(u)\ du\ - \frac{cos(u)sin^{n-1}(u)}{n}\du[/tex]
Let n = 2; So, we have:
[tex]\int\limits {sin^2(u)} \, du = \frac{2-1}{2}\int\limits sin^{2-2}(u)\ du\ - \frac{cos(u)sin^{2-1}(u)}{2}\du[/tex]
[tex]\int\limits {sin^2(u)} \, du = \frac{2-1}{2}\int\limits sin^{0}(u)\ du\ - \frac{cos(u)sin^{2-1}(u)}{2}\du[/tex]
[tex]\int\limits {sin^2(u)} \, du = \frac{1}{2}\int\limits sin^{0}(u)\ du\ - \frac{cos(u)sin^{2-1}(u)}{2}\du[/tex]
[tex]sin^0(u) = 1[/tex]
So, we have:
[tex]\int\limits {sin^2(u)} \, du = \frac{1}{2}\int\limits 1\ du\ - \frac{cos(u)sin^{2-1}(u)}{2}\du[/tex]
Integrate 1 with respect to u
[tex]\int\limits {sin^2(u)} \, du = \frac{1}{2}u - \frac{cos(u)sin^{2-1}(u)}{2}\du[/tex]
[tex]\int\limits {sin^2(u)} \, du = \frac{1}{2}u - \frac{cos(u)sin(u)}{2}\du[/tex]
Recall that:
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}\int\limits {sin^2(u)} \, du[/tex]
So, we have:
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}[ \frac{1}{2}u - \frac{cos(u)sin(u)}{2}\du][/tex]
Open bracket
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{8}u - \frac{cos(u)sin(u)}{8}[/tex]
Recall that: [tex]u = 2x[/tex] and [tex]du = 2 \ dx[/tex] [tex]dx = \frac{1}{2}du[/tex]
So, the expression becomes:
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{8}2x - \frac{cos(2x)sin(2x)}{8}[/tex]
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{cos(2x)sin(2x)}{8}[/tex]
Add constant c
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{cos(2x)sin(2x)}{8} +c[/tex]
----------------------------------------------------------------------------------------
In trigonometry:
[tex]sin(2\theta) = 2sin(\theta)cos(\theta)[/tex]
Divide both sides by 2
[tex]\frac{1}{2}sin(2\theta) = \frac{2sin(\theta)cos(\theta)}{2}[/tex]
[tex]\frac{1}{2}sin(2\theta) = sin(\theta)cos(\theta)[/tex]
Replace 2x with [tex]\theta[/tex]
[tex]\frac{1}{2}sin(2*2x) = sin(2x)cos(2x)[/tex]
[tex]\frac{1}{2}sin(4x) = sin(2x)cos(2x)[/tex]
----------------------------------------------------------------------------------------
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{cos(2x)sin(2x)}{8} +c[/tex] becomes
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{sin(4x)}{2*8} +c[/tex]
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{sin(4x)}{16} +c[/tex]
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{x}{4} - \frac{sin(4x)}{16} +c[/tex]
The solution can be further simplified as:
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{4x-sin(4x)}{16} +c[/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.