Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Evaluate the integral. (Remember to use absolute values where appropriate. Use C for the constant of integration.) cos(x) sin(2x) sin(x) dx

Sagot :

Answer:

[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{4x-sin(4x)}{16} +c[/tex]

Step-by-step explanation:

Given

[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx[/tex]

Required

Evaluate

[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx[/tex]

Rewrite as:

[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \int\limits {cos(x)\ sin(x)\ sin(2x)} \, dx[/tex]

In trigonometry:

[tex]sin(2x) = 2\ sin(x)\ cos(x)[/tex]

Divide both sides by 2

[tex]\frac{1}{2}sin(2x) = \frac{2\ sin(x)\ cos(x) }{2}[/tex]

[tex]\frac{1}{2}sin(2x) = sin(x)\ cos(x)[/tex]

[tex]\frac{1}{2}sin(2x) = cos(x)\ sin(x)[/tex]

Substitute [tex]\frac{1}{2}sin(2x)[/tex] for [tex]cos(x)\ sin(x)[/tex]

[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \int\limits {\frac{1}{2}sin(2x)\ sin(2x)} \, dx[/tex]

[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \int\limits {\frac{1}{2}sin^2(2x)} \, dx[/tex]

[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{2}\int\limits {sin^2(2x)} \, dx[/tex]

Let [tex]u = 2x[/tex]

Differentiate:

[tex]du = 2 \ dx[/tex]

Make [tex]dx[/tex] the subject

[tex]dx = \frac{1}{2}du[/tex]

Substitute [tex]\frac{1}{2}du[/tex] for [tex]dx[/tex]

[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{2}\int\limits {sin^2(2x)} \, \frac{1}{2}du[/tex]

Substitute 2x for u

[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{2}\int\limits {sin^2(u)} \, \frac{1}{2}du[/tex]

[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{2}*\frac{1}{2}\int\limits {sin^2(u)} \, du[/tex]

[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}\int\limits {sin^2(u)} \, du[/tex]

At this point, we apply the reduction formula:

Which is:

[tex]\int\limits {sin^n(u)} \, du = \frac{n-1}{2}\int\limits sin^{n-2}(u)\ du\ - \frac{cos(u)sin^{n-1}(u)}{n}\du[/tex]

Let n = 2; So, we have:

[tex]\int\limits {sin^2(u)} \, du = \frac{2-1}{2}\int\limits sin^{2-2}(u)\ du\ - \frac{cos(u)sin^{2-1}(u)}{2}\du[/tex]

[tex]\int\limits {sin^2(u)} \, du = \frac{2-1}{2}\int\limits sin^{0}(u)\ du\ - \frac{cos(u)sin^{2-1}(u)}{2}\du[/tex]

[tex]\int\limits {sin^2(u)} \, du = \frac{1}{2}\int\limits sin^{0}(u)\ du\ - \frac{cos(u)sin^{2-1}(u)}{2}\du[/tex]

[tex]sin^0(u) = 1[/tex]

So, we have:

[tex]\int\limits {sin^2(u)} \, du = \frac{1}{2}\int\limits 1\ du\ - \frac{cos(u)sin^{2-1}(u)}{2}\du[/tex]

Integrate 1 with respect to u

[tex]\int\limits {sin^2(u)} \, du = \frac{1}{2}u - \frac{cos(u)sin^{2-1}(u)}{2}\du[/tex]

[tex]\int\limits {sin^2(u)} \, du = \frac{1}{2}u - \frac{cos(u)sin(u)}{2}\du[/tex]

Recall that:

[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}\int\limits {sin^2(u)} \, du[/tex]

So, we have:

[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}[ \frac{1}{2}u - \frac{cos(u)sin(u)}{2}\du][/tex]

Open bracket

[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{8}u - \frac{cos(u)sin(u)}{8}[/tex]

Recall that:  [tex]u = 2x[/tex] and  [tex]du = 2 \ dx[/tex]      [tex]dx = \frac{1}{2}du[/tex]

So, the expression becomes:

[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{8}2x - \frac{cos(2x)sin(2x)}{8}[/tex]

[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{cos(2x)sin(2x)}{8}[/tex]

Add constant c

[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{cos(2x)sin(2x)}{8} +c[/tex]

----------------------------------------------------------------------------------------

In trigonometry:

[tex]sin(2\theta) = 2sin(\theta)cos(\theta)[/tex]

Divide both sides by 2

[tex]\frac{1}{2}sin(2\theta) = \frac{2sin(\theta)cos(\theta)}{2}[/tex]

[tex]\frac{1}{2}sin(2\theta) = sin(\theta)cos(\theta)[/tex]

Replace 2x with [tex]\theta[/tex]

[tex]\frac{1}{2}sin(2*2x) = sin(2x)cos(2x)[/tex]

[tex]\frac{1}{2}sin(4x) = sin(2x)cos(2x)[/tex]

----------------------------------------------------------------------------------------

[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{cos(2x)sin(2x)}{8} +c[/tex] becomes

[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{sin(4x)}{2*8} +c[/tex]

[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{sin(4x)}{16} +c[/tex]

[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{x}{4} - \frac{sin(4x)}{16} +c[/tex]

The solution can be further simplified as:

[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{4x-sin(4x)}{16} +c[/tex]