Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Answer:
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{4x-sin(4x)}{16} +c[/tex]
Step-by-step explanation:
Given
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx[/tex]
Required
Evaluate
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx[/tex]
Rewrite as:
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \int\limits {cos(x)\ sin(x)\ sin(2x)} \, dx[/tex]
In trigonometry:
[tex]sin(2x) = 2\ sin(x)\ cos(x)[/tex]
Divide both sides by 2
[tex]\frac{1}{2}sin(2x) = \frac{2\ sin(x)\ cos(x) }{2}[/tex]
[tex]\frac{1}{2}sin(2x) = sin(x)\ cos(x)[/tex]
[tex]\frac{1}{2}sin(2x) = cos(x)\ sin(x)[/tex]
Substitute [tex]\frac{1}{2}sin(2x)[/tex] for [tex]cos(x)\ sin(x)[/tex]
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \int\limits {\frac{1}{2}sin(2x)\ sin(2x)} \, dx[/tex]
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \int\limits {\frac{1}{2}sin^2(2x)} \, dx[/tex]
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{2}\int\limits {sin^2(2x)} \, dx[/tex]
Let [tex]u = 2x[/tex]
Differentiate:
[tex]du = 2 \ dx[/tex]
Make [tex]dx[/tex] the subject
[tex]dx = \frac{1}{2}du[/tex]
Substitute [tex]\frac{1}{2}du[/tex] for [tex]dx[/tex]
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{2}\int\limits {sin^2(2x)} \, \frac{1}{2}du[/tex]
Substitute 2x for u
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{2}\int\limits {sin^2(u)} \, \frac{1}{2}du[/tex]
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{2}*\frac{1}{2}\int\limits {sin^2(u)} \, du[/tex]
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}\int\limits {sin^2(u)} \, du[/tex]
At this point, we apply the reduction formula:
Which is:
[tex]\int\limits {sin^n(u)} \, du = \frac{n-1}{2}\int\limits sin^{n-2}(u)\ du\ - \frac{cos(u)sin^{n-1}(u)}{n}\du[/tex]
Let n = 2; So, we have:
[tex]\int\limits {sin^2(u)} \, du = \frac{2-1}{2}\int\limits sin^{2-2}(u)\ du\ - \frac{cos(u)sin^{2-1}(u)}{2}\du[/tex]
[tex]\int\limits {sin^2(u)} \, du = \frac{2-1}{2}\int\limits sin^{0}(u)\ du\ - \frac{cos(u)sin^{2-1}(u)}{2}\du[/tex]
[tex]\int\limits {sin^2(u)} \, du = \frac{1}{2}\int\limits sin^{0}(u)\ du\ - \frac{cos(u)sin^{2-1}(u)}{2}\du[/tex]
[tex]sin^0(u) = 1[/tex]
So, we have:
[tex]\int\limits {sin^2(u)} \, du = \frac{1}{2}\int\limits 1\ du\ - \frac{cos(u)sin^{2-1}(u)}{2}\du[/tex]
Integrate 1 with respect to u
[tex]\int\limits {sin^2(u)} \, du = \frac{1}{2}u - \frac{cos(u)sin^{2-1}(u)}{2}\du[/tex]
[tex]\int\limits {sin^2(u)} \, du = \frac{1}{2}u - \frac{cos(u)sin(u)}{2}\du[/tex]
Recall that:
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}\int\limits {sin^2(u)} \, du[/tex]
So, we have:
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}[ \frac{1}{2}u - \frac{cos(u)sin(u)}{2}\du][/tex]
Open bracket
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{8}u - \frac{cos(u)sin(u)}{8}[/tex]
Recall that: [tex]u = 2x[/tex] and [tex]du = 2 \ dx[/tex] [tex]dx = \frac{1}{2}du[/tex]
So, the expression becomes:
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{8}2x - \frac{cos(2x)sin(2x)}{8}[/tex]
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{cos(2x)sin(2x)}{8}[/tex]
Add constant c
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{cos(2x)sin(2x)}{8} +c[/tex]
----------------------------------------------------------------------------------------
In trigonometry:
[tex]sin(2\theta) = 2sin(\theta)cos(\theta)[/tex]
Divide both sides by 2
[tex]\frac{1}{2}sin(2\theta) = \frac{2sin(\theta)cos(\theta)}{2}[/tex]
[tex]\frac{1}{2}sin(2\theta) = sin(\theta)cos(\theta)[/tex]
Replace 2x with [tex]\theta[/tex]
[tex]\frac{1}{2}sin(2*2x) = sin(2x)cos(2x)[/tex]
[tex]\frac{1}{2}sin(4x) = sin(2x)cos(2x)[/tex]
----------------------------------------------------------------------------------------
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{cos(2x)sin(2x)}{8} +c[/tex] becomes
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{sin(4x)}{2*8} +c[/tex]
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{sin(4x)}{16} +c[/tex]
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{x}{4} - \frac{sin(4x)}{16} +c[/tex]
The solution can be further simplified as:
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{4x-sin(4x)}{16} +c[/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.