Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Answer:
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{4x-sin(4x)}{16} +c[/tex]
Step-by-step explanation:
Given
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx[/tex]
Required
Evaluate
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx[/tex]
Rewrite as:
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \int\limits {cos(x)\ sin(x)\ sin(2x)} \, dx[/tex]
In trigonometry:
[tex]sin(2x) = 2\ sin(x)\ cos(x)[/tex]
Divide both sides by 2
[tex]\frac{1}{2}sin(2x) = \frac{2\ sin(x)\ cos(x) }{2}[/tex]
[tex]\frac{1}{2}sin(2x) = sin(x)\ cos(x)[/tex]
[tex]\frac{1}{2}sin(2x) = cos(x)\ sin(x)[/tex]
Substitute [tex]\frac{1}{2}sin(2x)[/tex] for [tex]cos(x)\ sin(x)[/tex]
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \int\limits {\frac{1}{2}sin(2x)\ sin(2x)} \, dx[/tex]
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \int\limits {\frac{1}{2}sin^2(2x)} \, dx[/tex]
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{2}\int\limits {sin^2(2x)} \, dx[/tex]
Let [tex]u = 2x[/tex]
Differentiate:
[tex]du = 2 \ dx[/tex]
Make [tex]dx[/tex] the subject
[tex]dx = \frac{1}{2}du[/tex]
Substitute [tex]\frac{1}{2}du[/tex] for [tex]dx[/tex]
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{2}\int\limits {sin^2(2x)} \, \frac{1}{2}du[/tex]
Substitute 2x for u
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{2}\int\limits {sin^2(u)} \, \frac{1}{2}du[/tex]
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{2}*\frac{1}{2}\int\limits {sin^2(u)} \, du[/tex]
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}\int\limits {sin^2(u)} \, du[/tex]
At this point, we apply the reduction formula:
Which is:
[tex]\int\limits {sin^n(u)} \, du = \frac{n-1}{2}\int\limits sin^{n-2}(u)\ du\ - \frac{cos(u)sin^{n-1}(u)}{n}\du[/tex]
Let n = 2; So, we have:
[tex]\int\limits {sin^2(u)} \, du = \frac{2-1}{2}\int\limits sin^{2-2}(u)\ du\ - \frac{cos(u)sin^{2-1}(u)}{2}\du[/tex]
[tex]\int\limits {sin^2(u)} \, du = \frac{2-1}{2}\int\limits sin^{0}(u)\ du\ - \frac{cos(u)sin^{2-1}(u)}{2}\du[/tex]
[tex]\int\limits {sin^2(u)} \, du = \frac{1}{2}\int\limits sin^{0}(u)\ du\ - \frac{cos(u)sin^{2-1}(u)}{2}\du[/tex]
[tex]sin^0(u) = 1[/tex]
So, we have:
[tex]\int\limits {sin^2(u)} \, du = \frac{1}{2}\int\limits 1\ du\ - \frac{cos(u)sin^{2-1}(u)}{2}\du[/tex]
Integrate 1 with respect to u
[tex]\int\limits {sin^2(u)} \, du = \frac{1}{2}u - \frac{cos(u)sin^{2-1}(u)}{2}\du[/tex]
[tex]\int\limits {sin^2(u)} \, du = \frac{1}{2}u - \frac{cos(u)sin(u)}{2}\du[/tex]
Recall that:
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}\int\limits {sin^2(u)} \, du[/tex]
So, we have:
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}[ \frac{1}{2}u - \frac{cos(u)sin(u)}{2}\du][/tex]
Open bracket
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{8}u - \frac{cos(u)sin(u)}{8}[/tex]
Recall that: [tex]u = 2x[/tex] and [tex]du = 2 \ dx[/tex] [tex]dx = \frac{1}{2}du[/tex]
So, the expression becomes:
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{8}2x - \frac{cos(2x)sin(2x)}{8}[/tex]
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{cos(2x)sin(2x)}{8}[/tex]
Add constant c
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{cos(2x)sin(2x)}{8} +c[/tex]
----------------------------------------------------------------------------------------
In trigonometry:
[tex]sin(2\theta) = 2sin(\theta)cos(\theta)[/tex]
Divide both sides by 2
[tex]\frac{1}{2}sin(2\theta) = \frac{2sin(\theta)cos(\theta)}{2}[/tex]
[tex]\frac{1}{2}sin(2\theta) = sin(\theta)cos(\theta)[/tex]
Replace 2x with [tex]\theta[/tex]
[tex]\frac{1}{2}sin(2*2x) = sin(2x)cos(2x)[/tex]
[tex]\frac{1}{2}sin(4x) = sin(2x)cos(2x)[/tex]
----------------------------------------------------------------------------------------
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{cos(2x)sin(2x)}{8} +c[/tex] becomes
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{sin(4x)}{2*8} +c[/tex]
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{sin(4x)}{16} +c[/tex]
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{x}{4} - \frac{sin(4x)}{16} +c[/tex]
The solution can be further simplified as:
[tex]\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{4x-sin(4x)}{16} +c[/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.