Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Answer:
P = 0.0166 mm Hg
Explanation:
To solve this question, we need to use the Clausius Clapeyron equation, which is a commonly used expression to calculate vapour pressure at a given temperature. We have the enthalpy of vaporization of the mercury, so, let's write the equation:
Clausius Clapeyron equation:
Ln (P₂ / P₁) = (-ΔHv / R)(1/T₂ - 1/T₁) (1)
Where:
R: universal constant of gases (8.314 J / K.mol)
P₂: Vapour pressure at 43°C (or 316 K)
P₁: Pressure of mercury at the boiling point (1 atm)
T₂: temperature at 43 °C
T₁: Boiling point of mercury (357 °C or 630 K)
As we are given the boiling point of the mercury, we can safely assume that the pressure at this point is 1 atm, becuase remember that when a sustance boils, is because it's internal pressure has reached the atmospherical pressure of 1 atm. With this clear, all we just need to do is solve for P₂. We are going to do this very slowly so you can understand the process. First let's replace the given data:
Ln (P₂ / 1) = (-59100 J/mol / 8.314 J / K.mol) (1/316 - 1/630)
Ln P₂ = -7108.49 * (3.16x10⁻³ - 1.59x10⁻³)
Ln P₂ = -7108.49 * (1.51x10⁻³)
Ln P₂ = -10.7338
P₂ = 10⁽⁻¹⁰°⁷³³⁸⁾
P₂ = 2.18x10⁻⁵ atm
We can express this value in mm Hg and it will be:
P₂ = 2.18x10⁻⁵ * 760
P₂ = 0.0166 mm Hg
Hope this helps
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.