At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Answer:
Follows are the solution to the given question:
Explanation:
Dry Soil weight = solid soil weight = [tex]284 \ grams[/tex]
solid soil volume =[tex]205 \ cc[/tex]
saturated mass soil = [tex]361 \ g[/tex]
The weight of the soil after drainage is =[tex]295 \ g[/tex]
Water weight for soil saturation = [tex](361-284) = 77 \ g[/tex]
Water volume required for soil saturation =[tex]\frac{77}{1} = 77 \ cc[/tex]
Sample volume of water: [tex]= \frac{\text{water density}}{\text{water density input}}[/tex]
[tex]= 361- 295 \\\\ = 66 \ cc[/tex]
Soil water retained volume = (draining field weight - dry soil weight)
[tex]= 295 - 284 \\\\ = 11 \ cc.[/tex]
[tex]\text{POROSITY}= \frac{\text{Vehicle volume}}{\text{total volume Soil}}[/tex]
[tex]= \frac{77}{(205 + 77)} \\\\= \frac{77}{(282)} \\\\ = 27.30 \%[/tex]
(Its saturated water volume is equal to the volume of voids)
[tex]\text{YIELD SPECIFIC} = \frac{\text{Soil water volume}}{\text{Soil volume total}}[/tex]
[tex]= \frac{66}{(205+77)}\\\\= \frac{66}{(282)}\\\\=0.2340\\\\ = 0.23[/tex]
[tex]\text{Specific Retention}= \frac{\text{Volume of soil water}}{\text{Total soil volume}}[/tex]
[tex]= \frac{11}{282} \\\\= 0.0390 \\\\ = 0.04[/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.