Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

The deepest part of the ocean is the Challenger Deep, at 10,900 m. The depth was first measured in 1875 by the HMS Challenger by depth sounding (which does not involve sound waves). If you were to measure the depth by echo sounding (which does involve sound), what would you expect the time for a sound pulse at the surface to return in s, naively assuming a constant sound velocity throughout the ocean

Sagot :

Answer:

 t = 14.53 s

Explanation:

The speed of a wave is constant and is given by

         v = [tex]\sqrt{ \frac{B}{ \rho} }[/tex]

in this exercise they indicate that we assume the constant velocity, therefore we can use the uniform motion relations

          v = x / t

           t = x / v

in this case the sound pulse leaves the ship and must return so the distance is

          x = 2d

where d is the ocean depth d = 10900m and the speed of sound in seawater is v = 1500 m / s

         

let's calculate

           t = 2 10900/1500

           t = 14.53 s