Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
This question is incomplete, the complete question is;
On the occasion of its 10-year anniversary, AJ Inc. sells lucky draw tickets. If the customers are interested in the lucky draw contest, then they have to purchase a ticket for $15. The gift could be worth $115, $215, $315, or nothing. The probability of each event is given below. What is the value of the standard deviation
Probability 0.35 0.26 0.21 0.18
Amount gained $100 $200 $300 -$15
Option;
a) $11,143
b) $106
c) $10,200
d) $147
Answer:
the standard deviation is 106
Option b) $106 is the correct Answer
Step-by-step explanation:
Given the data in the question;
let the random variable be x
x = amount gained by customers in a lucky draw contest
so
Variance (x) = [∑(x² × P(x))] - [(∑(x × P(x))²]
so
x x² p(x) x.p(x) x².p(x)
$100 10,000 0.35 35 3,500
$200 40,000 0.26 52 10,400
$300 90,000 0.21 63 18,900
-$15 225 0.18 -2.7 40.5
TOTAL 147.3 32,840.5
Variance (x) = [∑(x² × P(x))] - [(∑(x × P(x))²]
we substitute;
Variance (x) = 32,840.5 - (147.3)²
Variance (x) = 32,840.5 - 21,697.29
Variance (x) = 11,143.21
Now Standard Deviation = √variance
so, S.D = √11,143.21
S.D = 105.56 ≈ 106
Therefore, the standard deviation is 106
Option b) $106 is the correct Answer
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.