Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Answer:
[tex]Volume = \frac{384}{7}\pi[/tex]
Step-by-step explanation:
Given (Missing Information):
[tex]y = x^\frac{3}{2}[/tex]; [tex]y = 8[/tex]; [tex]x=0[/tex]
Required
Determine the volume
Using Shell Method:
[tex]V = 2\pi \int\limits^a_b {p(y)h(y)} \, dy[/tex]
First solve for a and b.
[tex]y = x^\frac{3}{2}[/tex] and [tex]y = 8[/tex]
Substitute 8 for y
[tex]8 = x^\frac{3}{2}[/tex]
Take 2/3 root of both sides
[tex]8^\frac{2}{3} = x^{\frac{3}{2}*\frac{2}{3}}[/tex]
[tex]8^\frac{2}{3} = x[/tex]
[tex]2^{3*\frac{2}{3}} = x[/tex]
[tex]2^2 = x[/tex]
[tex]4 =x[/tex]
[tex]x = 4[/tex]
This implies that:
[tex]a = 4[/tex]
For [tex]x=0[/tex]
This implies that:
[tex]b=0[/tex]
So, we have:
[tex]V = 2\pi \int\limits^a_b {p(y)h(y)} \, dy[/tex]
[tex]V = 2\pi \int\limits^4_0 {p(y)h(y)} \, dy[/tex]
The volume of the solid becomes:
[tex]V = 2\pi \int\limits^4_0 {x(8 - x^{\frac{3}{2}}}) \, dx[/tex]
Open bracket
[tex]V = 2\pi \int\limits^4_0 {8x - x.x^{\frac{3}{2}}} \, dx[/tex]
[tex]V = 2\pi \int\limits^4_0 {8x - x^{\frac{2+3}{2}}} \, dx[/tex]
[tex]V = 2\pi \int\limits^4_0 {8x - x^{\frac{5}{2}}} \, dx[/tex]
Integrate
[tex]V = 2\pi * [{\frac{8x^2}{2} - \frac{x^{1+\frac{5}{2}}}{1+\frac{5}{2}}]\vert^4_0[/tex]
[tex]V = 2\pi * [{4x^2 - \frac{x^{\frac{2+5}{2}}}{\frac{2+5}{2}}]\vert^4_0[/tex]
[tex]V = 2\pi * [{4x^2 - \frac{x^{\frac{7}{2}}}{\frac{7}{2}}]\vert^4_0[/tex]
[tex]V = 2\pi * [{4x^2 - \frac{2}{7}x^{\frac{7}{2}}]\vert^4_0[/tex]
Substitute 4 and 0 for x
[tex]V = 2\pi * ([{4*4^2 - \frac{2}{7}*4^{\frac{7}{2}}] - [{4*0^2 - \frac{2}{7}*0^{\frac{7}{2}}])[/tex]
[tex]V = 2\pi * ([{4*4^2 - \frac{2}{7}*4^{\frac{7}{2}}] - [0])[/tex]
[tex]V = 2\pi * [{4*4^2 - \frac{2}{7}*4^{\frac{7}{2}}][/tex]
[tex]V = 2\pi * [{64 - \frac{2}{7}*2^2^{*\frac{7}{2}}][/tex]
[tex]V = 2\pi * [{64 - \frac{2}{7}*2^7][/tex]
[tex]V = 2\pi * [{64 - \frac{2}{7}*128][/tex]
[tex]V = 2\pi * [{64 - \frac{2*128}{7}][/tex]
[tex]V = 2\pi * [{64 - \frac{256}{7}][/tex]
Take LCM
[tex]V = 2\pi * [\frac{64*7-256}{7}][/tex]
[tex]V = 2\pi * [\frac{448-256}{7}][/tex]
[tex]V = 2\pi * [\frac{192}{7}][/tex]
[tex]V = [\frac{2\pi * 192}{7}][/tex]
[tex]V = \frac{\pi * 384}{7}[/tex]
[tex]V = \frac{384}{7}\pi[/tex]
Hence, the required volume is:
[tex]Volume = \frac{384}{7}\pi[/tex]
The volume of the solid of revolution generated by revolving the plane region about the y-axis is [tex]\frac{10240\pi}{3}[/tex] cubic units.
How to calculate the volume of a solid of revolution by shell method
Let be [tex]f(x) = x^{5/2}[/tex] and [tex]g(x) = 32[/tex], whose point of intersection is [tex](x,y) = (4, 32)[/tex]. Solid of revolution generated by revolving the plane region about the y-axis is defined by the following formula:
[tex]V = 2\pi\int\limits^{32}_0 {y\cdot g(y)} \, dy[/tex] (1)
If we know that [tex]g(y) = y^{2/5}[/tex], then the volume of the solid of revolution is:
[tex]V = 2\pi\int\limits^{32}_{0} {y^{7/5}} \, dy[/tex]
[tex]V = 2\pi\cdot \left(\frac{5}{12}\cdot y^{12/5}\right)\left|_{0}^{32}[/tex]
[tex]V = \frac{5\pi}{6} \cdot y^{12/5}|\limit_{0}^{32}[/tex]
[tex]V = \frac{5\pi}{6}\cdot 32^{12/5}[/tex]
[tex]V = \frac{10240\pi}{3}[/tex]
The volume of the solid of revolution generated by revolving the plane region about the y-axis is [tex]\frac{10240\pi}{3}[/tex] cubic units. [tex]\blacksquare[/tex]
Remark
The statement is incomplete. Complete form is shown below:
Use the shell method to write and evaluate the definite integral that represents the volume of the solid generated by revolving the plane region about the y-axis. [tex]y = x^{5/2}[/tex], [tex]y = 32[/tex], [tex]x = 0[/tex].
To learn more on solids of revolution, we kindly invite to check this verified question: https://brainly.com/question/338504
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.