Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Answer:
See the explanation below.
Explanation:
By means of Hooke's second law, we can calculate the spring constant with the initial conditions of the problem.
[tex]F=k*x[/tex]
where:
k = spring constant [N/m]
x = distance = 0.01 [m]
F = force or weight [N]
Weight can be calculated by means of the product of mass by gravitational acceleration.
m = mass = 500[g] = 0.5[kg]
[tex]W=F=m*g\\W = 0.5*9.81\\W= 4.905[N][/tex]
Now the spring constant can be calculated:
[tex]k=F/x\\k=4.905/0.01\\k = 490.5[N/m][/tex]
We must now use the same Hooke's law to determine the new spring force when stretching it 0.03 [m]
[tex]F_{new}=k*x\\F_{new}=490.5*0.03\\F_{new}=14.715[N][/tex]
Now we have to use Newton's second law to calculate acceleration. We must remember that Newton's Second Law tells us that the sum of forces is equal to the product of mass by acceleration.
[tex]F=m*a[/tex]
where:
F = Fnew = 14.715[N]
m = mass = 500 [g] = 0.5 [kg]
a = acceleration [m/s²]
Now replacing:
[tex]14.715=0.5*a\\a=14.715/0.5\\a=29.43[m/s^{2} ][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.