Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Answer:
See the explanation below.
Explanation:
By means of Hooke's second law, we can calculate the spring constant with the initial conditions of the problem.
[tex]F=k*x[/tex]
where:
k = spring constant [N/m]
x = distance = 0.01 [m]
F = force or weight [N]
Weight can be calculated by means of the product of mass by gravitational acceleration.
m = mass = 500[g] = 0.5[kg]
[tex]W=F=m*g\\W = 0.5*9.81\\W= 4.905[N][/tex]
Now the spring constant can be calculated:
[tex]k=F/x\\k=4.905/0.01\\k = 490.5[N/m][/tex]
We must now use the same Hooke's law to determine the new spring force when stretching it 0.03 [m]
[tex]F_{new}=k*x\\F_{new}=490.5*0.03\\F_{new}=14.715[N][/tex]
Now we have to use Newton's second law to calculate acceleration. We must remember that Newton's Second Law tells us that the sum of forces is equal to the product of mass by acceleration.
[tex]F=m*a[/tex]
where:
F = Fnew = 14.715[N]
m = mass = 500 [g] = 0.5 [kg]
a = acceleration [m/s²]
Now replacing:
[tex]14.715=0.5*a\\a=14.715/0.5\\a=29.43[m/s^{2} ][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.